Numerically efficient computational homogenization : Fourier-accelerated nodal solvers and reduced basis model order reduction

dc.contributor.advisorFritzen, Felix (Dr.-Ing. Dipl.-Math. techn.)
dc.contributor.authorLeuschner, Matthias
dc.date.accessioned2018-11-22T09:42:48Z
dc.date.available2018-11-22T09:42:48Z
dc.date.issued2018de
dc.description.abstractMany engineering materials exhibit heterogeneous microstructures, whose compositions and formations may to some extend be controlled during manufacturing processes. Homogenization methods predicting effective macroscopic properties of microheterogeneous materials are important tools for the development of high performance materials and for multiscale analyses of structures made thereof. Conventional computational homogenization techniques usually suffer from long computing times. For microstructures represented by pixel or voxel images, a reduction of computational effort can be achieved using fast Fourier transform algorithms. A method combining Fourier-based acceleration with a finite element discretization is presented with numerical examples of thermal and mechanical homogenization. In addition, a reduced basis approach for materials with viscoplastic constituents and imperfect interfaces at the phase boundaries is developed. Systematic offline analyses of precomputed training data allow for efficient online algorithms, which yield good predictions for test scenarios that deviate moderately from the training cases.en
dc.identifier.isbn978-3-937399-50-8
dc.identifier.other51511894X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-101343de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10134
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10117
dc.language.isoende
dc.publisherStuttgart : Institute of Applied Mechanicsde
dc.relation.ispartofseriesPublication series of the Institute of Applied Mechanics (IAM);1
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleNumerically efficient computational homogenization : Fourier-accelerated nodal solvers and reduced basis model order reductionen
dc.typedoctoralThesisde
ubs.dateAccepted2018-06-21
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.institutInstitut für Mechanik (Bauwesen)de
ubs.publikation.seitenX, 206de
ubs.publikation.typDissertationde
ubs.schriftenreihe.namePublication series of the Institute of Applied Mechanics (IAM)de
ubs.thesis.grantorBau- und Umweltingenieurwissenschaftende

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Dissertation_MLeuschner.pdf
Size:
5.73 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: