A characterisation of Morita algebras in terms of covers
dc.contributor.author | Cruz, Tiago | |
dc.date.accessioned | 2023-05-02T07:47:54Z | |
dc.date.available | 2023-05-02T07:47:54Z | |
dc.date.issued | 2021 | de |
dc.date.updated | 2023-03-25T07:38:32Z | |
dc.description.abstract | A pair (A, P) is called a cover of EndA(P)op if the Schur functor HomA(P,-) is fully faithful on the full subcategory of projective A-modules, for a given projective A-module P. By definition, Morita algebras are the covers of self-injective algebras and then P is a faithful projective-injective module. Conversely, we show that A is a Morita algebra and EndA(P)op is self-injective whenever (A, P) is a cover of EndA(P)op for a faithful projective-injective module P. | en |
dc.description.sponsorship | Studienstiftung des Deutschen Volkes | de |
dc.description.sponsorship | Projekt DEAL | de |
dc.identifier.issn | 1386-923X | |
dc.identifier.issn | 1572-9079 | |
dc.identifier.other | 1845610466 | |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-130309 | de |
dc.identifier.uri | http://elib.uni-stuttgart.de/handle/11682/13030 | |
dc.identifier.uri | http://dx.doi.org/10.18419/opus-13011 | |
dc.language.iso | en | de |
dc.relation.uri | doi:10.1007/s10468-021-10064-8 | de |
dc.rights | info:eu-repo/semantics/openAccess | de |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | de |
dc.subject.ddc | 510 | de |
dc.title | A characterisation of Morita algebras in terms of covers | en |
dc.type | article | de |
ubs.fakultaet | Mathematik und Physik | de |
ubs.institut | Institut für Algebra und Zahlentheorie | de |
ubs.publikation.seiten | 1197-1206 | de |
ubs.publikation.source | Algebras and representation theory 25 (2022), S. 1197-1206 | de |
ubs.publikation.typ | Zeitschriftenartikel | de |