Inferring kinetics and entropy production from observable transitions in partially accessible, periodically driven Markov networks

dc.contributor.authorMaier, Alexander M.
dc.contributor.authorDegünther, Julius
dc.contributor.authorMeer, Jann van der
dc.contributor.authorSeifert, Udo
dc.date.accessioned2025-05-31T07:19:23Z
dc.date.issued2024
dc.date.updated2025-01-24T18:38:43Z
dc.description.abstractFor a network of discrete states with a periodically driven Markovian dynamics, we develop an inference scheme for an external observer who has access to some transitions. Based on waiting-time distributions between these transitions, the periodic probabilities of states connected by these observed transitions and their time-dependent transition rates can be inferred. Moreover, the smallest number of hidden transitions between accessible ones and some of their transition rates can be extracted. We prove and conjecture lower bounds on the total entropy production for such periodic stationary states. Even though our techniques are based on generalizations of known methods for steady states, we obtain original results for those as well.en
dc.description.sponsorshipProjekt DEAL
dc.description.sponsorshipUniversität Stuttgart
dc.identifier.issn1572-9613
dc.identifier.issn0022-4715
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-164960de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16496
dc.identifier.urihttps://doi.org/10.18419/opus-16477
dc.language.isoen
dc.relation.uridoi:10.1007/s10955-024-03315-7
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530
dc.titleInferring kinetics and entropy production from observable transitions in partially accessible, periodically driven Markov networksen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetMathematik und Physik
ubs.institutInstitut für Theoretische Physik II
ubs.publikation.noppnyesde
ubs.publikation.seiten17
ubs.publikation.sourceJournal of statistical physics 191 (2024), No. 104
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10955_2024_Article_3315.pdf
Size:
926.46 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: