Greedy kernel methods for approximating breakthrough curves for reactive flow from 3D porous geometry data

dc.contributor.authorHerkert, Robin
dc.contributor.authorBuchfink, Patrick
dc.contributor.authorWenzel, Tizian
dc.contributor.authorHaasdonk, Bernard
dc.contributor.authorToktaliev, Pavel
dc.contributor.authorIliev, Oleg
dc.date.accessioned2024-09-11T10:08:02Z
dc.date.available2024-09-11T10:08:02Z
dc.date.issued2024de
dc.date.updated2024-08-08T14:03:49Z
dc.description.abstractWe address the challenging application of 3D pore scale reactive flow under varying geometry parameters. The task is to predict time-dependent integral quantities, i.e., breakthrough curves, from the given geometries. As the 3D reactive flow simulation is highly complex and computationally expensive, we are interested in data-based surrogates that can give a rapid prediction of the target quantities of interest. This setting is an example of an application with scarce data, i.e., only having a few available data samples, while the input and output dimensions are high. In this scarce data setting, standard machine learning methods are likely to fail. Therefore, we resort to greedy kernel approximation schemes that have shown to be efficient meshless approximation techniques for multivariate functions. We demonstrate that such methods can efficiently be used in the high-dimensional input/output case under scarce data. Especially, we show that the vectorial kernel orthogonal greedy approximation (VKOGA) procedure with a data-adapted two-layer kernel yields excellent predictors for learning from 3D geometry voxel data via both morphological descriptors or principal component analysis.en
dc.description.sponsorshipFunded by BMBF under the contracts 05M20VSA and 05M20AMD (ML-MORE). The authors acknowledge the funding of the project by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2075 - 390740016.de
dc.description.sponsorshipBMBFde
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG, German Research Foundation)de
dc.identifier.issn2227-7390
dc.identifier.other190244938X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-149353de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14935
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14916
dc.language.isoende
dc.relation.uridoi:10.3390/math12132111de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc510de
dc.subject.ddc530de
dc.titleGreedy kernel methods for approximating breakthrough curves for reactive flow from 3D porous geometry dataen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Angewandte Analysis und numerische Simulationde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten17de
ubs.publikation.sourceMathematics 12 (2024), No. 2111de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
mathematics-12-02111.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: