Optimal exposure time in gamma-ray attenuation experiments for monitoring time-dependent densities

dc.contributor.authorGonzalez-Nicolas, Ana
dc.contributor.authorBilgic, Deborah
dc.contributor.authorKröker, Ilja
dc.contributor.authorMayar, Assem
dc.contributor.authorTrevisan, Luca
dc.contributor.authorSteeb, Holger
dc.contributor.authorWieprecht, Silke
dc.contributor.authorNowak, Wolfgang
dc.date.accessioned2024-11-13T12:58:27Z
dc.date.available2024-11-13T12:58:27Z
dc.date.issued2022de
dc.date.updated2024-11-02T08:38:30Z
dc.description.abstractSeveral environmental phenomena require monitoring time-dependent densities in porous media, e.g., clogging of river sediments, mineral dissolution/precipitation, or variably-saturated multiphase flow. Gamma-ray attenuation (GRA) can monitor time-dependent densities without being destructive or invasive under laboratory conditions. GRA sends gamma rays through a material, where they are attenuated by photoelectric absorption and then recorded by a photon detector. The attenuated intensity of the emerging beam relates to the density of the traversed material via Beer-Lambert’s law. An important parameter for designing time-variable GRA is the exposure time, the time the detector takes to gather and count photons before converting the recorded intensity to a density. Large exposure times capture the time evolution poorly (temporal raster error, inaccurate temporal discretization), while small exposure times yield imprecise intensity values (noise-related error, i.e. small signal-to-noise ratio). Together, these two make up the total error of observing time-dependent densities by GRA. Our goal is to provide an optimization framework for time-dependent GRA experiments with respect to exposure time and other key parameters, thus facilitating neater experimental data for improved process understanding. Experimentalists set, or iterate over, several experimental input parameters (e.g., Beer-Lambert parameters) and expectations on the yet unknown dynamics (e.g., mean and amplitude of density and characteristic time of density changes). We model the yet unknown dynamics as a random Gaussian Process to derive expressions for expected errors prior to the experiment as a function of key experimental parameters. Based on this, we provide an optimization framework that allows finding the optimal (minimal-total-error) setup and demonstrate its application on synthetic experiments.en
dc.description.sponsorshipOpen Access funding enabled and organized by Projekt DEALde
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipUniversität Stuttgartde
dc.identifier.issn1573-1634
dc.identifier.issn0169-3913
dc.identifier.other1911941291
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-152741de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15274
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15255
dc.language.isoende
dc.relation.uridoi:10.1007/s11242-022-01777-5de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleOptimal exposure time in gamma-ray attenuation experiments for monitoring time-dependent densitiesen
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Mechanik (Bauwesen)de
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten463-496de
ubs.publikation.sourceTransport in porous media 143 (2022), S. 463-496de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s11242-022-01777-5.pdf
Size:
3.42 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: