Knowledge-based modeling of simulation behavior for Bayesian optimization

dc.contributor.authorHuber, Felix
dc.contributor.authorBürkner, Paul-Christian
dc.contributor.authorGöddeke, Dominik
dc.contributor.authorSchulte, Miriam
dc.date.accessioned2025-05-28T09:24:44Z
dc.date.issued2024
dc.date.updated2025-01-24T07:21:20Z
dc.description.abstractNumerical simulations consist of many components that affect the simulation accuracy and the required computational resources. However, finding an optimal combination of components and their parameters under constraints can be a difficult, time-consuming and often manual process. Classical adaptivity does not fully solve the problem, as it comes with significant implementation cost and is difficult to expand to multi-dimensional parameter spaces. Also, many existing data-based optimization approaches treat the optimization problem as a black-box, thus requiring a large amount of data. We present a constrained, model-based Bayesian optimization approach that avoids black-box models by leveraging existing knowledge about the simulation components and properties of the simulation behavior. The main focus of this paper is on the stochastic modeling ansatz for simulation error and run time as optimization objective and constraint, respectively. To account for data covering multiple orders of magnitude, our approach operates on a logarithmic scale. The models use a priori knowledge of the simulation components such as convergence orders and run time estimates. Together with suitable priors for the model parameters, the model is able to make accurate predictions of the simulation behavior. Reliably modeling the simulation behavior yields a fast optimization procedure because it enables the optimizer to quickly indicate promising parameter values. We test our approach experimentally using the multi-scale muscle simulation framework OpenDiHu and show that we successfully optimize the time step widths in a time splitting approach in terms of minimizing the overall error under run time constraints.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.identifier.issn1432-0924
dc.identifier.issn0178-7675
dc.identifier.other193039098X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-164710de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16471
dc.identifier.urihttps://doi.org/10.18419/opus-16452
dc.language.isoen
dc.relation.uridoi:10.1007/s00466-023-02427-3
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510
dc.subject.ddc004
dc.subject.ddc620
dc.titleKnowledge-based modeling of simulation behavior for Bayesian optimizationen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetMathematik und Physik
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnik
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungen
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Angewandte Analysis und numerische Simulation
ubs.institutInstitut für Parallele und Verteilte Systeme
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.seiten151-168
ubs.publikation.sourceComputational mechanics 74 (2024), S. 151-168
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
00466_2024_Article_2427.pdf
Size:
1 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: