Double U‐net : improved multiscale modeling via fully convolutional neural networks

dc.contributor.authorLißner, Julian
dc.contributor.authorFritzen, Felix
dc.date.accessioned2024-07-24T10:46:51Z
dc.date.available2024-07-24T10:46:51Z
dc.date.issued2023de
dc.date.updated2024-04-25T13:24:00Z
dc.description.abstractIn multiscale modeling, the response of the macroscopic material is computed by considering the behavior of the microscale at each material point. To keep the computational overhead low when simulating such high performance materials, an efficient, but also very accurate prediction of the microscopic behavior is of utmost importance. Artificial neural networks are well known for their fast and efficient evaluation. We deploy fully convolutional neural networks, with one advantage being that, compared to neural networks directly predicting the homogenized response, any quantity of interest can be recovered from the solution, for example, peak stresses relevant for material failure. We propose a novel model layout, which outperforms state‐of‐the‐art models with fewer model parameters. This is achieved through a staggered optimization scheme ensuring an accurate low‐frequency prediction. The prediction is further improved by superimposing an efficient to evaluate U‐net, which captures the remaining high‐level features.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.identifier.issn1617-7061
dc.identifier.other1896852149
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-147171de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14717
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14698
dc.language.isoende
dc.relation.uridoi:10.1002/pamm.202300205de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc624de
dc.titleDouble U‐net : improved multiscale modeling via fully convolutional neural networksen
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.institutInstitut für Mechanik (Bauwesen)de
ubs.publikation.seiten9de
ubs.publikation.sourcePAMM 23 (2023), No. e202300205de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
PAMM_PAMM202300205.pdf
Size:
793.44 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: