Stochastic thermodynamics of learning

dc.contributor.advisorSeifert, Udo (Prof. Dr.)
dc.contributor.authorGoldt, Sebastian
dc.date.accessioned2019-02-12T08:51:56Z
dc.date.available2019-02-12T08:51:56Z
dc.date.issued2018de
dc.description.abstractUnravelling the physical limits of information processing is an important goal of non-equilibrium statistical physics. It is motivated by the search for fundamental limits of computation, such as Landauer's bound on the minimal work required to erase one bit of information. Further inspiration comes from biology, where we would like to understand what makes single cells or the human brain so (energy-)efficient at processing information. In this thesis, we analyse the thermodynamic efficiency of learning in neural networks. We first discuss the interplay of information processing and dissipation from the perspective of stochastic thermodynamics, a powerful framework to analyse the thermodynamics of strongly fluctuating systems far from equilibrium. We then show that the dissipation of any physical system, in particular a neural network, bounds the information that the network can infer from data or learn from a teacher. Along the way, we illustrate our thermodynamic bounds by looking at a number of examples and we outline directions for future research.en
dc.identifier.other517562456
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-102546de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10254
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10237
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc530de
dc.titleStochastic thermodynamics of learningen
dc.typedoctoralThesisde
ubs.dateAccepted2018-02-09
ubs.fakultaetMathematik und Physikde
ubs.institutInstitut für Theoretische Physik IIde
ubs.publikation.seiten125de
ubs.publikation.typDissertationde
ubs.thesis.grantorMathematik und Physikde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Goldt_Stochastic_Thermodynamics_of_Learning.pdf
Size:
2.98 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: