3D-printed scale model for detection of railway wheel flats using augmented vibration data from axle box

dc.contributor.advisorMartin, Ullrich (Prof. Dr.-Ing.)
dc.contributor.authorKim, Eui-Youl
dc.date.accessioned2024-10-17T12:23:09Z
dc.date.available2024-10-17T12:23:09Z
dc.date.issued2024de
dc.description.abstractAs data-driven methods for defect detection become more prevalent in the railway industry, the demand for high-quality data continues to grow. However, field experiments are often time-consuming and constrained by practical limitations. This study introduces a methodology that uses Fused Deposition Modeling (FDM) 3D printing to develop a scale model for simulating wheel flat-induced vibrations, combined with a Long Short-Term Memory (LSTM)-based generative model to produce synthetic vibration data. This approach improves data quality by enhancing quantity, variety, and velocity, while increasing data volume and reducing the need for extensive experimental testing. The LSTM-based model generates realistic synthetic data, minimizing reliance on labor-intensive field experiments and offering a broader spectrum of defect scenarios. By accelerating the data generation process, this method provides an effective alternative in a laboratory setting and contributes to foundational research aimed at improving defect detection and maintenance processes in the railway industry.en
dc.identifier.other1905990065
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-150954de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15095
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15076
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc624de
dc.title3D-printed scale model for detection of railway wheel flats using augmented vibration data from axle boxen
dc.title.alternative3D-gedrucktes Maßstabsmodell zur Erkennung von Flachstellen an Eisenbahnrädern mittels angereicherten Vibrationsdaten aus dem Achslagerde
dc.typedoctoralThesisde
ubs.dateAccepted2024-07-05
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.institutInstitut für Eisenbahn- und Verkehrswesende
ubs.publikation.seiten142de
ubs.publikation.typDissertationde
ubs.thesis.grantorBau- und Umweltingenieurwissenschaftende

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Eui-Youl_Kim_Dissertation.pdf
Size:
8.83 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: