Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure

dc.contributor.authorDong, Shuo
dc.contributor.authorBeaulieu, Samuel
dc.contributor.authorSelig, Malte
dc.contributor.authorRosenzweig, Philipp
dc.contributor.authorChristiansen, Dominik
dc.contributor.authorPincelli, Tommaso
dc.contributor.authorDendzik, Maciej
dc.contributor.authorZiegler, Jonas D.
dc.contributor.authorMaklar, Julian
dc.contributor.authorXian, R. Patrick
dc.contributor.authorNeef, Alexander
dc.contributor.authorMohammed, Avaise
dc.contributor.authorSchulz, Armin
dc.contributor.authorStadler, Mona
dc.contributor.authorJetter, Michael
dc.contributor.authorMichler, Peter
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorTakagi, Hidenori
dc.contributor.authorStarke, Ulrich
dc.contributor.authorChernikov, Alexey
dc.contributor.authorWolf, Martin
dc.contributor.authorNakamura, Hiro
dc.contributor.authorKnorr, Andreas
dc.contributor.authorRettig, Laurenz
dc.contributor.authorErnstorfer, Ralph
dc.date.accessioned2025-04-02T14:38:37Z
dc.date.issued2023
dc.date.updated2024-11-14T08:00:39Z
dc.description.abstractAtomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of capital importance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-WSe2/graphene heterostructure. Depending on the nature of the optically prepared state, we find the different dominating transfer mechanisms: while electron injection from graphene to WSe2 is observed after photoexcitation of quasi-free hot carriers in the graphene layer, we establish an interfacial Meitner-Auger energy transfer process following the excitation of excitons in WSe2. By analysing the time-energy-momentum distributions of excited-state carriers with a rate-equation model, we distinguish these two types of interfacial dynamics and identify the ultrafast conversion of excitons in WSe2 to valence band transitions in graphene. Microscopic calculations find interfacial dipole-monopole coupling underlying the Meitner-Auger energy transfer to dominate over conventional Förster- and Dexter-type interactions, in agreement with the experimental observations. The energy transfer mechanism revealed here might enable new hot-carrier-based device concepts with van der Waals heterostructures.en
dc.description.sponsorshipProjekt DEAL
dc.identifier.issn2041-1723
dc.identifier.other192552616X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-161170de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16117
dc.identifier.urihttps://doi.org/10.18419/opus-16098
dc.language.isoen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/682843
dc.relation.uridoi:10.1038/s41467-023-40815-8
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530
dc.subject.ddc620
dc.titleObservation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructureen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetMathematik und Physik
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungen
ubs.fakultaetExterne wissenschaftliche Einrichtungen
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Halbleiteroptik und Funktionelle Grenzflächen
ubs.institutStuttgart Research Centre of Photonic Engineering (SCoPE)
ubs.institutMax-Planck-Institut für Festkörperforschung
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.seiten8
ubs.publikation.sourceNature communications 14 (2023), No. 5057
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s41467-023-40815-8.pdf
Size:
2.09 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: