A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws

dc.contributor.authorGiesselmann, Jan
dc.contributor.authorMeyer, Fabian
dc.contributor.authorRohde, Christian
dc.date.accessioned2023-06-05T11:40:36Z
dc.date.available2023-06-05T11:40:36Z
dc.date.issued2020de
dc.date.updated2023-05-15T00:28:08Z
dc.description.abstractThis article considers one-dimensional random systems of hyperbolic conservation laws. Existence and uniqueness of random entropy admissible solutions for initial value problems of conservation laws, which involve random initial data and random flux functions, are established. Based on these results an a posteriori error analysis for a numerical approximation of the random entropy solution is presented. For the stochastic discretization, a non-intrusive approach, namely the Stochastic Collocation method is used. The spatio-temporal discretization relies on the Runge-Kutta Discontinuous Galerkin method. The a posteriori estimator is derived using smooth reconstructions of the discrete solution. Combined with the relative entropy stability framework this yields computable error bounds for the entire space-stochastic discretization error. The estimator admits a splitting into a stochastic and a deterministic (space-time) part, allowing for a novel residual-based space-stochastic adaptive mesh refinement algorithm. The scaling properties of the residuals are investigated and the efficiency of the proposed adaptive algorithms is illustrated in various numerical examples.en
dc.description.sponsorshipBaden-Württemberg Stiftungde
dc.description.sponsorshipGerman Research Foundationde
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn0006-3835
dc.identifier.issn1572-9125
dc.identifier.other1850530106
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-131389de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13138
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13119
dc.language.isoende
dc.relation.uridoi:10.1007/s10543-019-00794-zde
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc510de
dc.titleA posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation lawsen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Angewandte Analysis und numerische Simulationde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten619-649de
ubs.publikation.sourceBIT numerical mathematics 60 (2020), S. 619-649de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s10543-019-00794-z.pdf
Size:
740.34 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: