The KdV approximation for a system with unstable resonances

dc.contributor.authorSchneider, Guido
dc.date.accessioned2024-04-25T13:44:34Z
dc.date.available2024-04-25T13:44:34Z
dc.date.issued2019de
dc.date.updated2023-11-14T05:53:57Z
dc.description.abstractThe KdV equation can be derived via multiple scaling analysis for the approximate description of long waves in dispersive systems with a conservation law. In this paper, we justify this approximation for a system with unstable resonances by proving estimates between the KdV approximation and true solutions of the original system. By working in spaces of analytic functions, the approach will allow us to handle more complicated systems without a detailed discussion of the resonances and without finding a suitable energy.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.identifier.issn1099-1476
dc.identifier.issn0170-4214
dc.identifier.other1887243380
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-142988de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14298
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14279
dc.language.isoende
dc.relation.uridoi:10.1002/mma.6110de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc510de
dc.titleThe KdV approximation for a system with unstable resonancesen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.institutInstitut für Analysis, Dynamik und Modellierungde
ubs.publikation.seiten3185-3199de
ubs.publikation.sourceMathematical methods in the applied sciences 43 (2019), S. 3185-3199de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
MMA_MMA6110.pdf
Size:
606.72 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: