Holistic process models : a Bayesian predictive ensemble method for single and coupled unit operation models

dc.contributor.authorMontano Herrera, Liliana
dc.contributor.authorEilert, Tobias
dc.contributor.authorHo, I-Ting
dc.contributor.authorMatysik, Milena
dc.contributor.authorLaussegger, Michael
dc.contributor.authorGuderlei, Ralph
dc.contributor.authorSchrantz, Bernhard
dc.contributor.authorJung, Alexander
dc.contributor.authorBluhmki, Erich
dc.contributor.authorSmiatek, Jens
dc.date.accessioned2022-12-19T09:12:11Z
dc.date.available2022-12-19T09:12:11Z
dc.date.issued2022
dc.date.updated2022-04-08T14:34:27Z
dc.description.abstractThe coupling of individual models in terms of end-to-end calculations for unit operations in manufacturing processes is a challenging task. We present a probability distribution-based approach for the combined outcomes of parametric and non-parametric models. With this so-called Bayesian predictive ensemble, the statistical moments such as mean value and standard deviation can be accurately computed without any further approximation. It is shown that the ensemble of different model predictions leads to an uninformed prior distribution, which can be transformed into a predictive posterior distribution using Bayesian inference and numerical Markov Chain Monte Carlo calculations. We demonstrate the advantages of our method using several numerical examples. Our approach is not restricted to certain unit operations, and can also be used for the more robust interpretation and assessment of model predictions in general.en
dc.identifier.issn2227-9717
dc.identifier.other183081415X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-126100de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12610
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12591
dc.language.isoende
dc.relation.uridoi:10.3390/pr10040662de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc670de
dc.titleHolistic process models : a Bayesian predictive ensemble method for single and coupled unit operation modelsen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Computerphysikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten18de
ubs.publikation.sourceProcesses 10 (2022), No. 662de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
processes-10-00662.pdf
Size:
895.72 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Plain Text
Description: