Singularities of non-rotationally symmetric solutions of boundary value problems for the Lamé equations in a 3 dimensional domain with conical points

dc.contributor.authorSändig, Anna-Margaretede
dc.contributor.authorSändig, Rainerde
dc.date.accessioned2015-03-16de
dc.date.accessioned2016-03-31T11:45:51Z
dc.date.available2015-03-16de
dc.date.available2016-03-31T11:45:51Z
dc.date.issued1992de
dc.description.abstractIt is well known that singularities are present in solutions of boundary value problems for the Lamé equations in conical domains. It follows from the general theory that the solutions consist of singular terms of the form r α (ln r) q F(α, φ, θ) (r is the distance to the vertex of the cone φ, and θ are the spherical angles) and α more regular term. Rotationally symmetric solutions of the Lamé equations under zero boundary displacements or stress free boundary conditions are investigated in (1, 2), where the values of α and q have been computed. Here we are concerned with the more general case, namely that the volume and surface forces of our problems are non rotationally symmetric. That means that the solutions depend not only on r and θ, but on the polar angle φ too. Using a monotonicity principle of Kozlov, Maz'ja und Schwab one can get regularity results for polyhedral domains too.en
dc.identifier.other428234577de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-98987de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/8321
dc.identifier.urihttp://dx.doi.org/10.18419/opus-8304
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.classificationLamé-Gleichung , Elliptisches Randwertproblemde
dc.subject.ddc510de
dc.titleSingularities of non-rotationally symmetric solutions of boundary value problems for the Lamé equations in a 3 dimensional domain with conical pointsen
dc.typeconferenceObjectde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutSonstige Einrichtungde
ubs.opusid9898de
ubs.publikation.sourceSchulze, Bert-Wolfgang (Hrsg.): Symposium "Analysis on Manifolds with Singularities" : Breitenbrunn 1990. Stuttgart : Teubner, 1992 (Teubner-Texte zur Mathematik 131). - ISBN 3-8154-2031-8, S. 181-193de
ubs.publikation.typKonferenzbeitragde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
saen1.pdf
Size:
2.78 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1021 B
Format:
Plain Text
Description: