B-Spline-Approximation mit automatischem Differenzieren

dc.contributor.authorBauer, Katrin
dc.date.accessioned2022-02-07T10:23:11Z
dc.date.available2022-02-07T10:23:11Z
dc.date.issued2021de
dc.description.abstractB-Splines spielen eine wichtige Rolle bei der Approximation von Funktionen. Die Wahl der Knoten beeinflusst die Form der Splines und damit die Qualität der Approximation. Die Knoten zu optimieren ist allerdings aufwändig. Bibliotheken wie JAX und PyTorch enthalten leistungsfähige Werkzeuge zum automatischen Differenzieren. Insbesondere für die Optimierung von Parametern eröffnet dies Möglichkeiten, die über klassische Techniken zur Parametrisierung weit hinausgehen. Diese Bachelorarbeit untersucht die Umsetzung von Splineapproximationen in PyTorch und JAX. Die hier vorgestellte Implementierung ermöglicht die Ableitung des Approximationsfehlers nach den Knotenpositionen mittels automatischem Differenzieren. Um den Approximationsfehler zu minimieren, vergleichen wir bekannte Optimierungsalgorithmen, welche die Ableitung verwenden. Neben den Knoten ist der Polynomgrad ein zentraler Parameter für Splines. Diese Arbeit betrachtet Funktionsapproximationen mit Fractional Splines, welche die Ableitung nach dem Splinegrad ermöglichen.de
dc.identifier.other1789182395
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-119456de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/11945
dc.identifier.urihttp://dx.doi.org/10.18419/opus-11928
dc.language.isodede
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleB-Spline-Approximation mit automatischem Differenzierende
dc.typebachelorThesisde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Parallele und Verteilte Systemede
ubs.publikation.seiten63de
ubs.publikation.typAbschlussarbeit (Bachelor)de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
bachelorarbeit-katrin-bauer.pdf
Size:
6.28 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: