Higher Morita-Tachikawa correspondence

dc.contributor.authorCruz, Tiago
dc.date.accessioned2025-04-16T09:13:23Z
dc.date.issued2024
dc.date.updated2024-10-15T19:27:58Z
dc.description.abstractImportant correspondences in representation theory can be regarded as restrictions of the Morita–Tachikawa correspondence. Moreover, this correspondence motivates the study of many classes of algebras like Morita algebras and gendo‐symmetric algebras. Explicitly, the Morita-Tachikawa correspondence describes that endomorphism algebras of generators-cogenerators over finite‐dimensional algebras are exactly the finite‐dimensional algebras with dominant dimension at least two. In this paper, we introduce the concepts of quasi‐generators and quasi‐cogenerators that generalise generators and cogenerators, respectively. Using these new concepts, we present higher versions of the Morita-Tachikawa correspondence that take into account relative dominant dimension with respect to a self‐orthogonal module with arbitrary projective and injective dimensions. These new versions also hold over Noetherian algebras that are finitely generated and projective over a commutative Noetherian ring.en
dc.description.sponsorshipProjekt DEAL
dc.identifier.issn1469-2120
dc.identifier.issn0024-6093
dc.identifier.other1926640969
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-162440de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16244
dc.identifier.urihttps://doi.org/10.18419/opus-16225
dc.language.isoen
dc.relation.uridoi:10.1112/blms.13090
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510
dc.titleHigher Morita-Tachikawa correspondenceen
dc.typearticlede
dc.type.versionpublishedVersion
ubs.fakultaetMathematik und Physik
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Algebra und Zahlentheorie
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.seiten2647-2660
ubs.publikation.sourceBulletin of the London Mathematical Society 56 (2024), S. 2647-2660
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
BLMS_BLMS13090.pdf
Size:
209.81 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: