Saddle-point and minimization principles for diffusion in solids : phase separation, swelling and fracture

dc.contributor.advisorSteeb, Holger (Prof. Dr.-Ing.)
dc.contributor.authorBöger, Lukas
dc.date.accessioned2020-05-04T07:57:02Z
dc.date.available2020-05-04T07:57:02Z
dc.date.issued2020de
dc.description.abstractLiquid diffusion in solids plays a major role in countless biomedical, geotechnical and everyday applications. Modern continuum mechanics delivers suitable modeling approaches for both macroscopically observable material behavior and microstructural arrangements: multi-field formulations allow for different length scales and coupled physical effects. This work contributes to the theory and finite element discretization of diffusion phenomena in solids. Foundations of large strain kinematics, Newtonian balances and constitutive theory are outlined in conjunction with solute transport and essential non-equilibrium thermodynamics. This forms the basis for three applications. First, spinodal decomposition in rigid bodies is formulated in terms of an incremental variational formulation allowing for an efficient exploitation of its saddle-point structure. Then, a new minimization formulation for Fickian diffusion in hydrogels is shown to be the counterpart of the classical saddle-point principle and implemented with non-standard FE schemes. This model is extended by a phase-field approach to fracture to account for diffusion-induced material failure.en
dc.identifier.isbn978-3-937399-51-5
dc.identifier.other1697027695
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-108550de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10855
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10838
dc.language.isoende
dc.publisherStuttgart : Institute of Applied Mechanicsde
dc.relation.ispartofseriesPublication series of the Institute of Applied Mechanics (IAM);3
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleSaddle-point and minimization principles for diffusion in solids : phase separation, swelling and fractureen
dc.typedoctoralThesisde
ubs.dateAccepted2019-02-22
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.institutInstitut für Mechanik (Bauwesen)de
ubs.publikation.seitenVIII, 165de
ubs.publikation.typDissertationde
ubs.schriftenreihe.namePublication series of the Institute of Applied Mechanics (IAM)de
ubs.thesis.grantorBau- und Umweltingenieurwissenschaftende

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
dissertation-lboeger.pdf
Size:
20.67 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: