Proposal for a magneto-optical beam splitter for atoms
Files
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this letter we present a theoretical study of the coherent diffraction of three-level atoms from a light field with a polarization gradient (counterpropagating crossed linearly polarized beams) and a static magnetic field applied parallel to the laser propagation direction. We show that for a particular ratio of the laser field intensity and the magnetic-field strength, there occurs a resonance between the Larmor precession of the magnetic alignment and the Rabi oscillations. On resonance the atomic wave function is diffracted by an approximately triangular optical potential which leads to a very efficient coherent splitting of the atomic beam. The proposed configuration is particularly interesting in relation to atom interferometry, when efficient coherent beam splitters for atoms are required.