Proposal for a magneto-optical beam splitter for atoms

Thumbnail Image

Date

1993

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In this letter we present a theoretical study of the coherent diffraction of three-level atoms from a light field with a polarization gradient (counterpropagating crossed linearly polarized beams) and a static magnetic field applied parallel to the laser propagation direction. We show that for a particular ratio of the laser field intensity and the magnetic-field strength, there occurs a resonance between the Larmor precession of the magnetic alignment and the Rabi oscillations. On resonance the atomic wave function is diffracted by an approximately triangular optical potential which leads to a very efficient coherent splitting of the atomic beam. The proposed configuration is particularly interesting in relation to atom interferometry, when efficient coherent beam splitters for atoms are required.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By