05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Fourier spotting : a novel setup for single-color reflectometry
    (2022) Siegel, Johannes; Berner, Marcel; Werner, Jürgen H.; Proll, Günther; Fechner, Peter; Schubert, Markus
    Single-color reflectrometry is a sensitive and robust detection method in optical biosensor applications, for example for bioanalysis. It is based on the interference of reflected monochromatic radiation and is label free. We present a novel setup for single-color reflectometry based on the patented technology of Berner et al. from 2016. Tilting areas of micro-mirrors allow us to encode the optical reflection signal of an analyte and reference channel into a particular carrier frequency with the amplitude being proportional to the local reflection. Therefore, a single photodiode is sufficient to collect the signals from both channels simultaneously. A 180∘ phase shift in the tilt frequency of two calibrated micro-mirror areas leads to a superposition of the analyte and reference signal which enables an efficient reduction of the baseline offset and potential baseline offset drift. A performance test reveals that we are able to detect changes of the refractive index n down to Δn < 0.01 of saline solutions as regents. A further test validates the detection of heterogeneous binding interaction. This test compromises immobilized testosterone-bovine serum albumin on a three-dimensional layer of biopolymer as ligand and monoclonal anti-testosterone antibodies as analyte. Antibody/antigen binding induces a local growth of the biolayer and change in the refractive index, which is measured via the local change of the reflection. Reproducible measurements enable for the analysis of the binding kinetics by determining the affinity constant KA = 1.59 × 10- 7 M- 1. In summary, this work shows that the concept of differential Fourier spotting as novel setup for single-color reflectometry is suitable for reliable bioanalysis.Graphical Abstract
  • Thumbnail Image
    ItemOpen Access
    Pulsed laser porosification of silicon thin films
    (2016) Sämann, Christian; Köhler, Jürgen R.; Dahlinger, Morris; Schubert, Markus B.; Werner, Jürgen H.
  • Thumbnail Image
    ItemOpen Access
    Solar cells with laser doped boron layers from atmospheric pressure chemical vapor deposition
    (2022) Zapf-Gottwick, Renate; Seren, Sven; Fernandez-Robledo, Susana; Wete, Evariste-Pasky; Schiliro, Matteo; Hassan, Mohamed; Mihailetchi, Valentin; Buck, Thomas; Kopecek, Radovan; Köhler, Jürgen; Werner, Jürgen H.
    We present laser-doped interdigitated back contact (IBC) solar cells with efficiencies of 23% on an area of 244 cm2 metallized by a screen-printed silver paste. Local laser doping is especially suited for processing IBC cells where a multitude of pn-junctions and base contacts lay side by side. The one-sided deposition of boron-doped precursor layers by atmospheric pressure chemical vapor deposition (APCVD) is a cost-effective method for the production of IBC cells without masking processes. The properties of the laser-doped silicon strongly depend on the precursor’s purity, thickness, and the total amount of boron dopants. Variations of the precursor in terms of thickness and boron content, and of the laser pulse energy density, can help to tailor the doping and sheet resistance. With saturation-current densities of 70 fA/cm2 at sheet resistances of 60 Ohm/sq, we reached maximum efficiencies of 23% with a relatively simple, industrial process for bifacial IBC-cells, with 70% bifaciality measured on the module level. The APCVD-layers were deposited with an inline lab-type system and a metal transport belt and, therefore, may have been slightly contaminated, limiting the efficiencies when compared to thermal-diffused boron doping. The use of an industrial APCVD system with a quartz glass transport system would achieve even higher efficiencies.