02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
10 results
Search Results
Item Open Access Transverse shear parametrization in hierarchic large rotation shell formulations(2024) Thierer, Rebecca; Oesterle, Bastian; Ramm, Ekkehard; Bischoff, ManfredConsistent treatment of large rotations in common Reissner-Mindlin formulations is a complicated task. Reissner-Mindlin formulations that use a hierarchic parametrization provide an elegant way to facilitate large rotation shell analyses. This can be achieved by the assumption of linearized transverse shear strains, resulting in an additive split of strain components, which technically simplifies implementation of corresponding shell finite elements. The present study aims at validating this assumption by systematically comparing numerical solutions with those of a newly implemented hierarchic and fully nonlinear Reissner-Mindlin shell element.Item Open Access A consistent finite element formulation of the geometrically non-linear Reissner-Mindlin shell model(2022) Müller, Alexander; Bischoff, ManfredWe present an objective, singularity-free, path independent, numerically robust and efficient geometrically non-linear Reissner-Mindlin shell finite element formulation. The formulation is especially suitable for higher order ansatz spaces. The formulation utilizes geometric finite elements presented by Sander [ 47 ] and Grohs [ 34 ] for the interpolation on non-linear manifolds. The proposed method is objective and free from artificial singularities and spurious path dependence. Due to the fact that the director field lives on the unit sphere, a special linearization procedure is required to obtain the stiffness matrix. Here, we use the simple constructions of Absil et al. [ 2 , 3 ], which yields an easy way to obtain the correct tangent operator of the potential energy. Additionally, we compare three different interpolation schemes for the shell director that can be found in the literature, where one of them is applied for the first time for the Reissner-Mindlin shell model. Furthermore, we compare the exponential map to the radial return normalization as procedure to update the nodal directors and conclude the superiority of the latter, in terms of fewer load steps. We also investigate the construction of a consistent tangent base update scheme. Path independence, efficiency and objectivity of the formulation are verified via a set of numerical examples.Item Open Access Mechanische Grundlagen und Numerik dreidimensionaler Schalenelemente(2013) Irslinger, Johannes; Bischoff, Manfred (Prof. Dr.-Ing. habil.)In der vorliegenden Arbeit werden einige für die Simulation von Schalenstrukturen wesentliche Aspekte behandelt. Zunächst erfolgt eine Diskussion der mechanischen Grundlagen von Schalentheorien mit der primären Zielsetzung, eine Verbindung zwischen den Annahmen bei der Formulierung dreidimensionaler finiter Schalenelemente und den ihnen zugrundeliegenden Schalentheorien herzustellen. Darauf aufbauend wird die Formulierung eines robusten, dreidimensionalen Volumen-Schalenelements vorgestellt und untersucht, inwieweit verschiedene, auf Ersatzproblemen basierende Ansätze zum Aufstellen von Vorkonditionierern geeignet sind, um die Lösung der schlecht konditionierten Gleichungssysteme von Schalensimulationen mit iterativen Verfahren effizient zu gestalten.Item Open Access Analytical and numerical case studies on tailoring stiffness for the design of structures with displacement control(2023) Trautwein, Axel; Prokosch, Tamara; Senatore, Gennaro; Blandini, Lucio; Bischoff, ManfredThis paper discusses the role that structural stiffness plays in the context of designing adaptive structures. The focus is on load-bearing structures with adaptive displacement control. A design methodology is implemented to minimize the control effort by making the structure as stiff as possible against external loads and as flexible as possible against the effect of actuation. This rationale is tested using simple analytical and numerical case studies.Item Open Access Reciprocal mass matrices and a feasible time step estimator for finite elements with Allman's rotations(2020) Tkachuk, AntonFinite elements with Allman's rotations provide good computational efficiency for explicit codes exhibiting less locking than linear elements and lower computational cost than quadratic finite elements. One way to further raise their efficiency is to increase the feasible time step or increase the accuracy of the lowest eigenfrequencies via reciprocal mass matrices. This article presents a formulation for variationally scaled reciprocal mass matrices and an efficient estimator for the feasible time step for finite elements with Allman's rotations. These developments take special care of two core features of such elements: existence of spurious zero‐energy rotation modes implying the incompleteness of the ansatz spaces, and the presence of mixed‐dimensional degrees of freedom. The former feature excludes construction of dual bases used in the standard variational derivation of reciprocal mass matrices. The latter feature destroys the efficiency of the existing nodal‐based time step estimators stemming from the Gershgorin's eigenvalue bound. Finally, the developments are tested for standard benchmarks and triangular, quadrilateral, and tetrahedral finite elements with Allman's rotations.Item Open Access Investigation and elimination of nonlinear Poisson stiffening in 3d and solid shell finite elements(2022) Willmann, Tobias; Bieber, Simon; Bischoff, ManfredWe show that most geometrically nonlinear three‐dimensional shell elements and solid shell elements suffer from a previously unknown artificial stiffening effect that only appears in geometrically nonlinear problems, in particular in the presence of large bending deformations. It can be interpreted as a nonlinear variant of the well‐known Poisson thickness locking effect. We explain why and under which circumstances this phenomenon appears and propose concepts to avoid it.Item Open Access Locking and hourglassing in nonlinear finite element technology(Stuttgart : Institut für Baustatik und Baudynamik, Universität Stuttgart, 2024) Bieber, Simon; Bischoff, Manfred (Prof. Dr.-Ing. habil.)This thesis deals with locking and hourglassing issues that arise in nonlinear finite element analyses of problems in mechanics. The major focus lies on the analysis of these numerical deficiencies, the design of suitable benchmarks and the development of novel remedies. A new nonlinear locking phenomenon is described. It is caused by parasitic nonlinear strain terms and it is particularly pronounced for large element deformations in combination with higher-order integration and a critical parameter, such as the element aspect ratio or the Poisson's ratio. To avoid this problem within the popular class of enhanced assumed strain formulations, novel strain enhancements are presented. An analytical solution of a tailored finite bending problem is used to benchmark the newly proposed element formulations. Further, the problem of hourglassing in both compression and tension of solid bodies is analysed. It is shown that the underlying causes of hourglassing can be explained by geometry-induced and material-induced trigger mechanisms of structural instabilities. Crucial for understanding as well as benchmarking is the analytical in-depth analysis of a large strain bifurcation problem. Based on these insights, an obvious remedy for the geometric hourglassing phenomenon is presented. The last part of this thesis is devoted to the efficient algorithmic treatment of the computation of instability points. The difficulties in choosing a suitable load-stepping approach with methods from the literature are discussed and a methodological idea of an adaptive load-stepping scheme is presented. Efficiency and practicability are demonstrated for several benchmarks.Item Open Access Berichte der Fachtagung Baustatik - Baupraxis 14 : 23. und 24. März 2020, Universität Stuttgart(Stuttgart : Institut für Baustatik und Baudynamik, Universität Stuttgart, 2020) Bischoff, Manfred; Scheven, Malte von; Oesterle, BastianItem Open Access Stabile und konsistente Kontaktmodellierung in Raum und Zeit(2012) Cichosz, Thomas; Bischoff, Manfred (Prof. Dr.-Ing. habil.)Die vorliegende Arbeit befasst sich mit verschiedenen Aspekten der Diskretisierung von Kontaktvorgängen in Raum und Zeit. Im Hinblick auf eine stabile und konsistente Modellierung werden bestehende Verfahren verglichen und Verbesserungen erarbeitet. Schwerpunkt der räumlichen Untersuchungen ist die Weiterentwicklung der in HARTMANN U. A. (2007) und HARTMANN UND RAMM (2008) vorgestellten Kontaktdiskretisierung, die auf der dualen Mortar-Methode (WOHLMUTH 2000, 2001) basiert. Durch die Verwendung der Methode der Lagrange’schen Multiplikatoren erfüllt diese Formulierung die Nichtdurchdringungsbedingung exakt. Gleichzeitig erlaubt die Diskretisierung der Multiplikatoren mit dualen Formfunktionen die einfache Kondensation der zusätzlichen Unbekannten aus dem resultierenden Gleichungssystem. Somit wird der übliche Nachteil der Methode der Lagrange’schen Multiplikatoren vermieden. Mit der herkömmlichen Definition der dualen Formfunktionen können am Rand des Kontaktbereichs inkonsistente Mortar-Matrizen entstehen. Als Folge dessen resultieren unphysikalische Werte für die Knotenklaffung und fehlerhaft übertragene Kontaktkräfte. Zur Korrektur dieses Verhaltens wird in dieser Arbeit eine modifizierte Definition der Mortar-Matrizen vorgeschlagen. Damit die Modifikation nicht die Konditionierung des resultierenden Gleichungssystems verschlechtert, wird zusätzlich eine Wichtungsprozedur für die modifizierten Mortar-Matrizen vorgestellt. Als Ergebnis ist in allen Fällen eine konsistente Übertragung der Kontaktkraft und eine konsistente Berechnung der Normalklaffung möglich, ohne dabei die Konditionierung zu beeinträchtigen. Die Betrachtungen zur zeitlichen Diskretisierung analysieren zunächst den Einfluss von Kontaktereignissen auf die Eigenschaften der dynamischen Strukturantwort. Beruhend auf den gewonnenen Erkenntnissen wird anschließend eine möglichst optimale zeitliche Kontaktdiskretisierung formuliert. Diese ist mit einer Strategie nach KANE U. A. (1999) energetisch stabil. Durch die Erweiterung einer Idee von DEUFLHARD U. A. (2008) auf Probleme mit großen Deformationen werden Oszillationen in der Kontaktkraft vermieden. Die Modifikation der Geschwindigkeit in einer Nachlaufrechnung stellt physikalisch sinnvolle Kontaktgeschwindigkeiten sicher. Darüber hinaus wird der Kontakt energieerhaltend modelliert, ohne die Nichtdurchdringungsbedingung zu verletzen. Hierzu kommt das Energie-Korrekturkraft-Verfahren zum Einsatz, das eine im Rahmen der vorliegenden Arbeit formulierte Weiterentwicklung des Konzepts von ARMERO und PETÖCZ (1998) darstellt. Außer mit dem präsentierten Verfahren ist eine energieerhaltende Kontaktbehandlung bei gleichzeitiger exakter Erfüllung der Nichtdurchdringungsbedingung nur mit der „Velocity-Update-Method“ (LAURSEN UND LOVE 2002) möglich. Im Gegensatz zu dieser gibt das Energie-Korrekturkraft-Verfahren die dissipierte Energie jedoch nicht ausschließlich in kinetischer Form zurück. Stattdessen bestimmt die Systemantwort, wie die Energie-Korrekturkraft die Gesamtenergie vergrößert. Anhand von numerischen Experimenten werden abschließend die untersuchten Verfahren bewertet. Zusätzlich wird die Leistungsfähigkeit der entwickelten Methoden demonstriert.Item Open Access Motion design with efficient actuator placement for adaptive structures that perform large deformations(2021) Sachse, Renate; Geiger, Florian; Scheven, Malte von; Bischoff, ManfredAdaptive structures have great potential to meet the growing demand for energy efficiency in buildings and engineering structures. While some structures adapt to varying loads by a small change in geometry, others need to perform an extensive change of shape to meet varying demands during service. In the latter case, it is important to predict suitable deformation paths that minimize control effort. This study is based on an existing motion design method to control a structure between two given geometric configurations through a deformation path that is optimal with respect to a measure of control efficiency. The motion design method is extended in this work with optimization procedures to obtain an optimal actuation system placement in order to control the structure using a predefined number of actuators. The actuation system might comprise internal or external actuators. The internal actuators are assumed to replace some of the elements of the structure. The external actuators are modeled as point forces that are applied to the structure nodes. Numerical examples are presented to show the potential for application of the motion design method to non-load-bearing structures.