02 Fakultät Bau- und Umweltingenieurwissenschaften

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Smooth or with a snap! Biomechanics of trap reopening in the Venus flytrap (Dionaea muscipula)
    (2022) Durak, Grażyna M.; Thierer, Rebecca; Sachse, Renate; Bischoff, Manfred; Speck, Thomas; Poppinga, Simon
    Fast snapping in the carnivorous Venus flytrap (Dionaea muscipula) involves trap lobe bending and abrupt curvature inversion (snap‐buckling), but how do these traps reopen? Here, the trap reopening mechanics in two different D. muscipula clones, producing normal‐sized (N traps, max. ≈3 cm in length) and large traps (L traps, max. ≈4.5 cm in length) are investigated. Time‐lapse experiments reveal that both N and L traps can reopen by smooth and continuous outward lobe bending, but only L traps can undergo smooth bending followed by a much faster snap‐through of the lobes. Additionally, L traps can reopen asynchronously, with one of the lobes moving before the other. This study challenges the current consensus on trap reopening, which describes it as a slow, smooth process driven by hydraulics and cell growth and/or expansion. Based on the results gained via three‐dimensional digital image correlation (3D‐DIC), morphological and mechanical investigations, the differences in trap reopening are proposed to stem from a combination of size and slenderness of individual traps. This study elucidates trap reopening processes in the (in)famous Dionaea snap traps - unique shape‐shifting structures of great interest for plant biomechanics, functional morphology, and applications in biomimetics, i.e., soft robotics.
  • Thumbnail Image
    ItemOpen Access
    The structural and mechanical basis for passive‐hydraulic pine cone actuation
    (2022) Eger, Carmen J.; Horstmann, Martin; Poppinga, Simon; Sachse, Renate; Thierer, Rebecca; Nestle, Nikolaus; Bruchmann, Bernd; Speck, Thomas; Bischoff, Manfred; Rühe, Jürgen
    The opening and closing of pine cones is based on the hygroscopic behavior of the individual seed scales around the cone axis, which bend passively in response to changes in environmental humidity. Although prior studies suggest a bilayer architecture consisting of lower actuating (swellable) sclereid and upper restrictive (non‐ or lesser swellable) sclerenchymatous fiber tissue layers to be the structural basis of this behavior, the exact mechanism of how humidity changes are translated into global movement are still unclear. Here, the mechanical and hydraulic properties of each structural component of the scale are investigated to get a holistic picture of their functional interplay. Measurements of the wetting behavior, water uptake, and mechanical measurements are used to analyze the influence of hydration on the different tissues of the cone scales. Furthermore, their dimensional changes during actuation are measured by comparative micro‐computed tomography (µ‐CT) investigations of dry and wet scales, which are corroborated and extended by 3D‐digital image correlation‐based displacement and strain analyses, biomechanical testing of actuation force, and finite element simulations. Altogether, a model allowing a detailed mechanistic understanding of pine cone actuation is developed, which is a prime concept generator for the development of biomimetic hygromorphic systems.
  • Thumbnail Image
    ItemOpen Access
    Hierarchische Schalenformulierungen für nichtlineare statische und dynamische Analysen
    (Stuttgart : Institut für Baustatik und Baudynamik, Universität Stuttgart, 2024) Thierer, Rebecca; Bischoff, Manfred (Prof. Dr.-Ing. habil.)
    Diese Arbeit beschäftigt sich mit hierarchischen Schalenformulierungen für geometrisch nichtlineare Analysen in der Statik und Dynamik. Aufgrund ihrer hierarchischen Parametrisierung besitzen sie im Vergleich zu den als standardparametrisiert bezeichneten Formulierungen vorteilhafte Eigenschaften. Ihre hierarchischen Primärvariablen führen zu einer intrinsischen Vermeidung von Lockingeffekten. Außerdem liefern sie die Möglichkeit zu intrinsisch selektiver Massenskalierung. Dabei können entsprechende Eigenfrequenzen, die die kritische Zeitschrittweite in der expliziten Dynamik beschränken, verringert werden und somit die Effizienz dieser Analysen gesteigert werden. Gleichzeitig bleiben strukturrelevante, niedrigere Eigenfrequenzen nahezu unverändert, wodurch Lösungen ihre Genauigkeit beibehalten. In der Arbeit wird zusätzlich zu einer aus der Literatur bekannten Reissner-Mindlin-Formulierung, die Querschub nur linearisiert berücksichtigt, eine weitere entwickelt, die nichtlinearen Querschub berücksichtigt. Mithilfe numerischer Studien kann die Zulässigkeit der linearisierten Berücksichtigung bewiesen werden. Beide Formulierungen werden weiterhin als Grundlage zur Entwicklung dreidimensionaler Schalenformulierungen herangezogen, die mit einer weiteren, neu entwickelten verglichen werden. Sowohl Details der Formulierungen als auch Ergebnisse numerischer Studien führen zur Erkenntnis, dass die linearisierte Berücksichtigung von Querschubrotationen für die Direktorkonstruktion sowohl von Reissner-Mindlin- als auch von dreidimensionalen Schalenformulierungen Vorteile bringt. Eine neu entwickelte Variante hierarchischer Schubvariable verbessert zudem die Konditionierung entsprechender finiter Elemente und trägt so ebenfalls zu einer Effizienzsteigerung bei.