13 Zentrale Universitätseinrichtungen
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/14
Browse
2 results
Search Results
Item Open Access Visual analysis of droplet dynamics in large-scale multiphase spray simulations(2021) Heinemann, Moritz; Frey, Steffen; Tkachev, Gleb; Straub, Alexander; Sadlo, Filip; Ertl, ThomasWe present a data-driven visual analysis approach for the in-depth exploration of large numbers of droplets. Understanding droplet dynamics in sprays is of interest across many scientific fields for both simulation scientists and engineers. In this paper, we analyze large-scale direct numerical simulation datasets of the two-phase flow of non-Newtonian jets. Our interactive visual analysis approach comprises various dedicated exploration modalities that are supplemented by directly linking to ParaView. This hybrid setup supports a detailed investigation of droplets, both in the spatial domain and in terms of physical quantities. Considering a large variety of extracted physical quantities for each droplet enables investigating different aspects of interest in our data. To get an overview of different types of characteristic behaviors, we cluster massive numbers of droplets to analyze different types of occurring behaviors via domain-specific pre-aggregation, as well as different methods and parameters. Extraordinary temporal patterns are of high interest, especially to investigate edge cases and detect potential simulation issues. For this, we use a neural network-based approach to predict the development of these physical quantities and identify irregularly advected droplets.Item Open Access Visual ensemble analysis of fluid flow in porous media across simulation codes and experiment(2023) Bauer, Ruben; Ngo, Quynh Quang; Reina, Guido; Frey, Steffen; Flemisch, Bernd; Hauser, Helwig; Ertl, Thomas; Sedlmair, MichaelWe study the question of how visual analysis can support the comparison of spatio-temporal ensemble data of liquid and gas flow in porous media. To this end, we focus on a case study, in which nine different research groups concurrently simulated the process of injecting CO 2into the subsurface. We explore different data aggregation and interactive visualization approaches to compare and analyze these nine simulations. In terms of data aggregation, one key component is the choice of similarity metrics that define the relationship between different simulations. We test different metrics and find that using the machine-learning model “S4” (tailored to the present study) as metric provides the best visualization results. Based on that, we propose different visualization methods. For overviewing the data, we use dimensionality reduction methods that allow us to plot and compare the different simulations in a scatterplot. To show details about the spatio-temporal data of each individual simulation, we employ a space-time cube volume rendering. All views support linking and brushing interaction to allow users to select and highlight subsets of the data simultaneously across multiple views. We use the resulting interactive, multi-view visual analysis tool to explore the nine simulations and also to compare them to data from experimental setups. Our main findings include new insights into ranking of simulation results with respect to experimental data, and the development of gravity fingers in simulations.