13 Zentrale Universitätseinrichtungen

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/14

Browse

Search Results

Now showing 1 - 10 of 83
  • Thumbnail Image
    ItemOpen Access
    Investigation of oxide layer development of X6CrNiNb18-10 stainless steel exposed to high-temperature water
    (2024) Veile, Georg; Hirpara, Radhika; Lackmann, Simon; Weihe, Stefan
    The oxide layer development of X6CrNiNb18-10 (AISI 347) during exposure to high-temperature water has been investigated. Stainless steels are known to form a dual oxide layer in corrosive environments. The secondary Fe-rich oxide layer has no significant protective effect. In contrast, the primary Cr-rich oxide layer is known to reach a stabilized state, protecting the base metal from further oxidation. This study’s purpose was to determine the development of oxide layer dimensions over exposure time using SEM, TEM and EDX line scans. While a parabolic development of Cr in the protective primary layer and Fe in the secondary layer was observed, the dimensions of the Ni layer remained constant. Ni required the presence of a pronounced Fe-rich secondary layer before being able to reside on the outer secondary layer. With increasing immersion time, the Ni element fraction surpassed the Cr element fraction in the secondary layer. Oxide growth on the secondary layer could be observed. After 480 h, nearly the entire surface was covered by the outer oxide layer. In the metal matrix, no depletion of Cr or Ni could be observed over time; however, an increased presence of Cr and Ni in the primary layer was found at the expense of Fe content. The Nb-stabilized stainless steel was subject to the formation of Niobium pentoxide (Nb2O5), with the quantity and magnitude of element fraction increasing over exposure time.
  • Thumbnail Image
    ItemOpen Access
    Auslegung und Optimierung von Flanschverbindungen mit SMC-Losflanschen und PTFE-Dichtungen
    (2014) Kurz, Hariolf; Roos, Eberhard (Prof. Dr.)
    Die Anforderungen an Rohrleitungen aus glasfaserverstärktem Kunststoff (GFK) sind im Hinblick auf die Dichtheit, die Medienbeständigkeit und die Betriebssicherheit in den letzten Jahren gestiegen. Dennoch müssen die Betreiber chemischer Anlagen mit Rohrleitungen aus glasfaserverstärktem Kunststoff mit Losflanschen aus sheet-molding-compound (SMC) diese nachweislich sicher betreiben. Die Motivation zu dieser Arbeit liegt darin, dieses Bestreben mit der Auswahl von geeigneten PTFE-Dichtungen und mit der Untersuchung und Optimierung des mechanischen Verhaltens der SMC-Losflansche sowie ihrer analytischen Berechnung zu unterstützen. Die gewonnenen Erkenntnisse sind im Folgenden zusammengefasst. • Optimierung der Dichtungen In diesem Themenbereich wurden neun verschiedene Dichtungen aus Polytetrafluorethylen (PTFE) und zwei Gummidichtungen hinsichtlich ihrer Eignung für den Einsatz in GFK-Flanschverbindungen untersucht. Die Basis der Untersuchungen bildeten die Dichtungskennwerte nach DIN EN 13555, welche unter reduzierten Anfangspressungen im Leckage- und Stauchversuch und bei niedrigerer Steifigkeit und verlängerter Versuchsdauer im Kriechrelaxationsversuch ermittelt wurden. Vier PTFE-Dichtungen stellten sich im Leckageversuch als besonders geeignet heraus. An diesen wurden zusätzlich Untersuchungen zum Rückfeder- und Kriechrelaxationsverhalten durchgeführt. Die wichtigsten Erkenntnisse aus der Dichtungsprüfung sind zum einen, dass das Leckageratenkriterium der TA Luft mit 0,01 mbar•l/(s•m) bei 40 bar Helium von einigen PTFE-Dichtungen auch bei den in GFK-Flanschverbindungen typischen Flächenpressungen unterhalb 10 MPa eingehalten werden kann. Zum anderen entspricht das Rückfederverhalten der PTFE-Dichtungen dem der Gummidichtungen und die Kriechrelaxation der PTFE-Dichtungen unter den Bedingungen in GFK-Flanschverbindungen ist mit etwa 80% verbleibender Flächenpressung im Betrieb akzeptabel. Der Verlust der Vorspannkraft der Flanschverbindung im Betrieb resultiert maßgeblich aus der Kriechrelaxation der GFK-Flansche. Zur Optimierung von PTFE-Dichtungen werden von den Dichtungsherstellern verschiedene Maßnahmen getroffen, wie zum Beispiel die Kombination unterschiedlicher Werkstoffe oder Variation der Dichtungsgeometrie, welche das Abdichtverhalten verbessern. Um die Auswirkungen dieser Modifikationen rechnerisch erfassen zu können, wurde ein zweistufiges numerisches Konzept entwickelt, welches die Durchlässigkeit der Dichtung mit einem Transportansatz beschreibt. Dafür wird im ersten Schritt in einer Finite-Elemente-Simulation die Flächenpressungsverteilung der Dichtung bestimmt. Die lokale Dichtheit kann mit dem Leckageversuch nach DIN EN 13555 bestimmt und in einem zweiten Schritt der in Finite Elemente diskretisierten Dichtung örtlich zugewiesen werden. Die Lösung des Transportproblems führt zur Druckverteilung innerhalb der Dichtung und zur globalen Leckagerate der optimierten Dichtung. Diese Vorgehensweise liefert im Vergleich zu den gemessenen Druckprofilen innerhalb unter-schiedlich verpresster Dichtungen und für die globale Leckagerate einer vorverpressten PTFE-Dichtung konsistente Werte. Dem entsprechend konnte die Reduktion der Leckagerate einer durch Vorverpressen optimierten PTFE-Flachdichtung um den Faktor 3000 korrekt vorhergesagt werden. Die Methodik ermöglicht ebenfalls eine realistische Bewertung der Dichtheit von Flansch-verbindungen mit der Finite-Elemente-Methode (FEM), mit dem Ergebnis, dass in der Regel die zur Einhaltung der Dichtheit benötigten Mindestwerte der Schraubenkräfte im Vergleich zur herkömmlichen Bewertung der Dichtheit mit der mittleren Flächenpressung der Dichtung geringer werden. • Optimierung der Flansche Zunächst wurde der fertigungsbedingte Lagenaufbau und die damit verbundenen Werkstoffeigen-schaften der SMC-Losflansche bestimmt. Es handelt sich um eine unregelmäßige Verteilung eines transversal isotropen Lagenaufbaus. Dies wurde durch die Untersuchung der Mikrostruktur verdeutlicht, wobei festgestellt wurde, dass innerhalb der Flansche neben den eingeschlossenen Luftblasen auch die Matrix zwischen den Fasern von mikroskopischen Lufteinschlüssen durchsetzt ist. Aus diesem Grund weichen die Elastizitätskonstanten aus der theoretischen Herleitung deutlich von den gemessenen Werten an Bauteilausschnitten ab. Die Untersuchung des mechanischen Verhaltens der SMC-Losflansche wurde in einem Stauchversuch durchgeführt. Der Unterschied zur genormten Vorgehensweise nach DIN EN 16966 Teil 7 besteht darin, dass die Last kontinuierlich bis zum Bauteilversagen aufgebracht und dabei die axiale Verformung des Losflansches aufgezeichnet wird. Die Auswertung des Stauchverhaltens liefert als Ergebnis die maximale Traglast und die Steifigkeit der Losflansche. Beide Werte sind zur Bestimmung der Qualität einer Flanschverbindung von entscheidender Bedeutung. Zusätzlich werden mögliche Schwächen im Bauteil, welche zu vorzeitigem Versagen führen, erkannt. Dies ermöglicht dem Hersteller, beispielsweise durch die Variation des Lagenaufbaus oder des Matrixwerkstoffes, die Eigenschaften der Losflansche zu optimieren. Mit der messtechnischen Erfassung des Kriechrelaxationsverhaltens unter Temperatur in einem speziell dafür entwickelten Prüfstand wurde bestätigt, dass der Vorspannkraftverlust der Flanschverbindung im Betrieb maßgeblich durch die viskose Verformung der Flansche bedingt ist. Mit dem Ziel, den Lagenaufbau der SMC-Losflansche zu verbessern und die analytische Beschreibung der Losflansche zu verifizieren, wurde ein Finite-Elemente-Modell der Flanschverbindung erstellt. Darin wurden die an Bauteilausschnitten senkrecht und längs der SMC-Matten ermittelten anisotropen Elastizitätskonstanten, Festigkeits- und Kriecheigenschaften mittels geeigneter Werkstoffmodelle eingebunden. Der unregelmäßige Lagenaufbau wurde durch die Anpassung der Elementkoordinatensysteme an die an Schnitten visuell ermittelte Orientierung der SMC-Matten abgebildet. Die Bewertung der Ergebnisse der FE-Simulation mit der Festigkeits-hypothese nach Tsai-Wu bestätigt das verbesserte Tragverhalten eines Losflansches mit dem durch eine Fertigungsumstellung erzielten ebenen Lagenaufbau. Damit konnte die maximale Traglast des SMC-Losflansches um 50 % erhöht werden. Die Kriechrelaxation des SMC-Losflansches wird durch die Abbildung der an den Bauteilausschnitten ermittelten, richtungsabhängigen Kriechkurven mit dem von Hill modifizierten Kriechgesetz nach Graham-Walles beschrieben. Damit werden die gemessenen zeitlichen Verläufe der Schraubenkraft im Betrieb realistisch abgebildet. Die Vorhersage der im Vergleich zum bestehenden Losflansch geringfügig erhöhten Kriechrelaxation des Prototyps mit ebenem Lagenaufbau wird durch die Messung bestätigt. Insgesamt bedeutet die Erhöhung der zulässigen Schraubenkräfte bei Montage von 40 kN auf 60 kN eine deutliche Zunahme der Schraubenkraft im Betrieb, was die Betriebssicherheit erhöht und die Verwendung von PTFE-Dichtungen begünstigt. • Optimierung der Berechnungsmethode Mit den Erkenntnissen zur Beanspruchung von Losflanschen aus der messtechnischen Untersuchung der Flanschverbindung und aus der numerischen Simulation wurde ein analytisches Berechnungskonzept für den Losflansch entwickelt. Dieses berechnet die Beanspruchung in Umfangsrichtung aus dem Stülpmoment. Die Umfangsspannungen und die Verformung des Losflansches werden damit realistischer beschrieben als durch die bestehenden Regelwerke. Da das Berechnungskonzept ausschließlich die Spannung an der Losflanschoberseite zwischen den Schrauben abbildet, kann ein Bauteilversagen an anderer Stelle nicht erfasst werden. So muss bei der Auslegung differenziert nach der Lokalisierung des Versagens im Stauchversuch vorgegangen werden: - Losflansch versagt im Stauchversuch an der Flanschoberseite zwischen den Schrauben Das Berechnungskonzept ist anwendbar. Zur Berechnung der Flanschverbindung kann die analytische Beschreibung des Verhaltens von Losflanschen die bestehenden Regelwerken ersetzen. Mit dem zur Diskussion stehenden Wegfall der Werkstoffabminderungsfaktoren gemäß den Definitionen im AD 2000-Merkblatt führt die beschriebene Vorgehensweise zu höheren Schraubenkräften bei Montage und im Betrieb der Flanschverbindung. Dies bewirkt eine höhere Dichtheit und Betriebssicherheit von Anlagen mit GFK-Rohrleitungen. - Losflansch versagt an anderer Stelle Das Berechnungskonzept kann nicht angewendet werden. Alternativ können die maximale zulässige Schraubenkraft für Montage und im Betrieb sowie die Steifigkeiten im Stauchversuch ermittelt werden. Der Hersteller kann die sich im Stauchversuch offenbarenden Schwachstellen im Bauteil identifizieren und den Fertigungsprozess hinsichtlich des Tragverhaltens der Losflansche optimieren.
  • Thumbnail Image
    ItemOpen Access
    Beschreibung des Verformungs-, Festigkeits- und Versagensverhaltens von Komponenten im Kriechbereich unter instationärer Beanspruchung mit einem elastisch-viskoplastischen Werkstoffmodell
    (2003) Schemmel, Jürgen; Roos, Eberhard (Prof. Dr.-Ing. habil.)
    Der Beanspruchungsverlauf in Turbinenwellen kann charakterisiert werden durch einen stationären Betrieb im Kriechbereich und eine begrenzte Anzahl von An- und Abfahrten, die dem LCF-Bereich zuzuordnen sind. Der Werkstoff unterliegt dabei komplexen mechanischen und thermischen Beanspruchungen. Im stationären Betrieb ändert sich der mehrachsige Spannungszustand infolge zeitabhängiger Verformungsvorgänge, wodurch die Spannungsspitzen deutlich reduziert werden. Durch An- und Abfahrten wird der Spannungszustand des stationären Betriebs gestört, wobei eine zusätzliche Plastifizierung des Werkstoffs auftreten kann. Daneben tritt eine Ermüdungsschädigung auf, die das nachfolgende Kriechen negativ beeinflusst. Für den weiteren Betrieb hat dieses gegenüber einer Fahrweise ohne Laständerungen einen veränderten Spannungszustand und abweichendes Kriechverhalten zur Folge. Zur Beschreibung des Verformungs- und Versagensverhaltens von Turbinenwellen sind auf Kriechgleichungen basierende konventionelle Berechnungsansätze ungeeignet, da diese die Wechselwirkung zwischen Kriechen und Ermüden sowie deren Gesamtwirkung auf das Verformungs- und Versagensverhalten nicht erfassen. Einen Ausweg bieten viskoplastische Werkstoffmodelle. Im Gegensatz zu den Ansätzen der klassischen Plastizitäts- und Kriechtheorie, die beide Vorgänge als unabhängig voneinander betrachten, beschreiben derartige Werkstoffmodelle alle auftretenden Effekte im Materialverhalten durch übergeordnete Formulierungen. Durch diese Vereinheitlichung der zeitunabhängigen und zeitabhängigen bleibenden Dehnungen können die Wechselwirkungen zwischen Kriechen und Ermüden erfasst werden. Das Ziel der vorliegenden Arbeit war es, ein derartiges viskoplastisches Werkstoffmodell zu ertüchtigen und zu verifizieren, welches das Verformungs- und Versagensverhalten von typischen Dampfturbinenwerkstoffen unter mehrachsiger Kriechermüdungsbeanspruchung in Turbinenwellen beschreibt. Zur Ermittlung des Werkstoffverhaltens von Turbinenwellen unter praxisnahen Bedingungen wurden für die Versuchswerkstoffe 30CrMoNiV5-11 und X12CrMoWVNbN10-1-1 bei werkstoffcharakteristischen Anwendungstemperaturen von 550 bzw. 600 °C Kriechermüdungsversuche an Hohlzylinderproben durchgeführt. Dabei wurden die Proben einer über der Zeit veränderlichen kombinierten Beanspruchung unterworfen, die einem aus der Praxis abgeleiteten Beanspruchungszyklus entspricht. Bei den Versuchen trat Versagen deutlich früher ein, als durch eine lineare Überlagerung von Erschöpfungsanteilen für Kriechen und Ermüden abgeschätzt wurde. Zur Beschreibung des Verformungs- und Schädigungsverhaltens unter Kriechermüdungsbeanspruchung wurde ein elastisch-viskoplastisches Werkstoffmodell ertüchtigt. Da das Kriechen für niedrige Beanspruchung vorwiegend diffusionsgesteuert, für hohe Lasten dagegen versetzungsgesteuert ist, wurden zur besseren Beschreibung des Kriechverhaltens zwei inelastische Dehnraten modelliert. Dabei ergibt die Summe der beiden inelastischen Dehnraten die Kriechgeschwindigkeit. Das Festigkeitsänderungsverhalten des Werkstoffs unter statischer und zyklischer Beanspruchung wurde in der Modellierung durch kinematische und isotrope Variablen erfasst. Zusätzlich enthält das Modell zwei Schädigungsparameter zur Beschreibung der Kriech- und Ermüdungsschädigung. Diese können zur Berücksichtigung der Wechselwirkungen zwischen Zeitstand- und Ermüdungsschädigung nichtlinear überlagert werden, wodurch die gesamte schädigende Wirkung auf das Verformungs- und Versagensverhalten besser beschrieben werden kann. Die Ermittlung der Modellparameter erfolgte durch Anpassung an eine umfangreiche Werkstoffdatenbasis, bestehend aus Warmzug-, Ermüdungs- und Zeitstandversuchen. Es konnte gezeigt werden, dass mit den ermittelten Parametern das einachsige Werkstoffverhalten hervorragend beschrieben werden kann. Mit dem für die Werkstoffe 30CrMoNiV5-11 und X12CrMoWVNbN10-1-1 angepassten Werkstoffmodell wurden die mehrachsigen Kriechermüdungsversuche nachgerechnet. Dabei konnten die Verformungsverläufe der Kriechermüdungsversuche für die beiden Werkstoffe gut bis zum Erreichen des tertiären Kriechbereichs unter Verwendung der Vergleichsspannungshypothese nach von Mises beschrieben werden. Der Zeitpunkt des tertiären Kriechens und des Versagens wurde zunächst nur unbefriedigend wiedergegeben. Durch eine stärkere Berücksichtigung des Einflusses der Ermüdungsschädigung auf das nachfolgende Kriechverhalten konnte zusätzlich das tertiäre Kriechen der Kriechermüdungsversuche gut erfasst werden. Mit einer erweiterten Schädigungsbetrachtung konnte das Versagensverhalten mit einer Abweichung von nur 10 % zum Experiment berechnet werden. Ein wesentlicher Vorteil des ertüchtigten Werkstoffmodells ist, dass es eine geschlossene Beschreibung des Ablaufs der Verformung- und Schädigungsvorgänge bei zeitabhängiger Beanspruchung von Bauteilen ermöglicht.
  • Thumbnail Image
    ItemOpen Access
    Experimentelle und numerische Untersuchungen zur fertigungsbedingten Entstehung von Fehlern in Mischschweißverbindungen
    (2011) Schütt, Thorsten; Roos, Eberhard (Prof. Dr.-Ing. habil.)
    Das Ziel der vorliegenden Arbeit war es, mit Hilfe von experimentellen und numerischen Untersuchungen an einer Mischschweißverbindung die Parameter die zur Entstehung und Ausbildung von Ablösungen (Disbonding) zwischen ferritischem Grundwerkstoff und Pufferung führen können zu identifizieren und zu quantifizieren. Zur Festlegung der Randbedingungen für die experimentellen Untersuchungen wurden strukturmechanische FE-Simulationen des Schweißprozesses, einerseits der Pufferung und andererseits der Festigkeitsnaht, für unterschiedliche Nahtgeometrien und Schweißparameter wie Flankenwinkel, Pufferungsdicke, Schweißnahtbreite, Zwischenlagentemperatur und Schweißfolge durchgeführt. Hieraus wurden die Randbedingungen für die experimentellen Untersuchungen abgeleitet, damit möglichst hohe mechanische Spannungen, d. h. Eigenspannungen, am Übergang von Pufferung zum ferritischen Grundwerkstoff auftreten und so das Entstehen von Ablösungen begünstigen. Die experimentellen Untersuchungen wurden an einer Mischnaht aus dem ferritischen Werkstoff 22NiMoCr3-7 und dem austenitischen, niobstabilisierten Werkstoff X6CrNiNb18-10 durchgeführt. Die Pufferung und die Verbindungsnaht wurde mit dem Schweißzusatzwerkstoff Fox SAS 2R hergestellt. Zum Vergleich wurde eine weitere Mischschweißverbindung mit dem Schweißzusatzwerkstoff Fox NiCr70Nb ausgeführt. Für die Schweißung der Pufferungen wurde basierend auf Erfahrungen bei der Herstellung von Pufferungen für Mischschweißverbindungen und den Ergebnissen der FE-Analysen, Parameter bestimmt, die eine hohe Neigung zu Ablösungen zwischen Ferrit und Pufferung, also Disbonding, aufweisen. Ausgewählt wurden primär die Parameter, die zu hohen mechanischen Spannungen, d. h. Eigenspannungen, beim Erstarren des Schweißgutes führen. Mit den nach Abschluss der Schweißarbeiten durchgeführten zerstörungsfreien Prüfungen konnten allerdings keine Ablösungen detektiert werden. Die durchgeführten zerstörenden metallkundlichen und mechanisch-technologischen Prüfungen haben gezeigt, dass bei der austenitischen Nahtausführung Gefügebereiche mit inhomogenen Festigkeits- und Verformungseigenschaften aufgetreten sind. Diese unterschiedlichen Werkstoffeigenschaften können die Bildung von Ablösungen begünstigen. Bei der mechanisch-technologischen Prüfung zeigten hierbei spezifisch entnommene Kerbschlagproben eine Bruchmorphologie, wie sie bereits bei disbondingbehafteten Mischschweißverbindungen festgestellt werden konnte. Im Anschluss an die experimentellen Untersuchungen wurden ergänzend zu den numerischen Vorausberechnungen zur Festlegung der Schweißparameter weiterführende, detailliertere strukturmechanische FE-Simulationen des Schweißprozess (Schweißung der Pufferung und der Verbindungsnaht) der Mischschweißverbindung durchgeführt. Für die Nachrechnung wurden hierzu die Parameter des eingesetzten Materialmodells (Armstrong, Frederick und Chaboche (AFC) Modell) an die aktuellen Werkstoffeigenschaften angepasst. Hierzu wurden isotherme, zyklische Zugversuche sowie statische Zugversuche bei vier verschiedenen Temperaturen (RT, 500 °C, 800 °C, 1300 °C) durchgeführt. Darüber hinaus wurden anhand von Kurzzeitstandversuchen die Parameter für ein modifiziertes Graham-Walles Kriechgesetz bestimmt, das für die Simulation der Spannungsarmglühung der Pufferung verwendet wurde. Mit den so ermittelten Parametern haben sich nach der durchgeführten Schweißsimulation Eigenspannungen im Bereich des Interface ergeben, die für die Längsspannung Werte von bis zu 500 MPa erreichen. Die berechnete Längenänderung des Rohres aufgrund der Schweißung ergab einen Schrumpfbetrag des Rohres von ca. 7 mm. Der Vergleich der numerischen Ergebnisse mit den experimentellen Befunden zeigte für den größten Teil der Parameter und der Schweißnähte eine gute Übereinstimmung. Mit der in dieser Arbeit weiterentwickelten Methodik zur Untersuchung und Bestimmung der werkstoffkundlichen und mechanischen Eigenschaften einer Mischschweißverbindung konnten somit die Einflussgrößen identifiziert werden, die zu Disbonding in Mischschweißverbindungen führen können. Unter Berücksichtigung der hierbei ermittelten Parameter kann ein mögliches Auftreten von Disbonding bei der Herstellung von Mischschweißverbindungen weitestgehend ausgeschlossen werden.
  • Thumbnail Image
    ItemOpen Access
    Untersuchungen über das Tragverhalten von Übergreifungsstößen geschweißter Betonstahlmatten aus Betonrippenstahl unter Schwellast
    (1974) Rehm, Gallus; Eligehausen, Rolf
    This article describes the results of tests for investigation of the behaviour of overlapped splices of welded reinforcing steel mats from ribbed reinforcing bars. The tests were intended for a verification of the specification laid down in DIN 1045. After a description of the test specimens of the materials used and of the test procedure, the results are explained. The area of the lapped splices and the areas outside the overlapped splices are dealt with separately. From the test results is derived a proposal for dimensioning of overlapped splices.
  • Thumbnail Image
    ItemOpen Access
    A new approach to modelling friction stir welding using the CEL method
    (2013) Hoßfeld, Max; Roos, Eberhard
    Although friction stir welding (FSW) has made its way to industrial application particularly in the last years, the FSW process, its influences and their strong interactions among themselves are still not thoroughly understood. This lack of understanding mainly arises from the adverse observability of the actual process with phenomena like material flow and deposition, large material deformations and thermomechanical interactions determining the mechanical properties of the weld. To close this gap an appropriate numerical model validated by experiments may be helpful. But because of the issues mentioned above most numerical techniques are not capable of modelling the FSW process. Therefore in this study a Coupled Eulerian-Lagrangian (CEL) approach is used for modelling the whole FSW process. A coupled thermomechanical 3D FE model is developed with the CEL formulation given in the FE code ABAQUS® V6.12. Results for temperature fields, weld formation and the possibility of void formation are shown and validated.
  • Thumbnail Image
    ItemOpen Access
    A fully coupled thermomechanical 3D model for all phases of friction stir welding
    (2016) Hoßfeld, Max
    Although friction stir welding (FSW) has made its way to industrial application particularly in the last years, the FSW process, its influences and their strong interactions among themselves are still not thoroughly understood. The lack of understanding mainly arises from the adverse observability of the actual process with phenomena like material ow and deposition, large material deformations plus their complex thermo-mechanical interactions determining the weld formation and its mechanical properties. A validated numerical process model may be helpful for closing this gap as well as for an isolated assessment of individual influences and phenomena. Hereby such a model will be a valuable assistance for process and especially tool development. In this study a Coupled Eulerian-Lagrangian (CEL) approach with Abaqus V6.14 is used for modeling the whole FSW process within one continuous model. The resolution reached allows not only simulating the joining of two sheets into one and real tooling geometries but also burr and internal void formation. Results for temperature fields, surface and weld formation as well as process forces are shown and validated.
  • Thumbnail Image
    ItemOpen Access
    Numerische Untersuchungen zur J-Integralerweiterung für elastisch-plastisches Material im Hinblick auf die Integrität des Reaktordruckbehälters
    (2002) Schimpfke, Thomas; Roos, Eberhard (Prof. Dr.-Ing. habil.)
    Im Rahmen dieser Arbeit wurden numerische Untersuchungen von Rissbeanspruchungsparametern durchgeführt, die im Gegensatz zum J-Integral auch bei Entlastung und Spannungsumlagerung nach einer Plastifizierung weg- und gebietsunabhängige Werte aufweisen. Betrachtet wurden die Parameter T* von Atluri und J* von Simo. Im Falle linear-elastischen Materialverhaltens sind beide Beanspruchungsgrößen identisch mit dem J-Integral. Für elastisch-plastisches Werkstoffverhalten stellen sie hinsichtlich der Weg- und Gebietsunabhängigkeit verallgemeinerte Parameter dar. Der Parameter T* entspricht gerade dem J-Integral für einen auf die Rissspitze schrumpfenden Integrationspfad. Der Parameter J* ist ebenfalls der Grenzwert für einen auf die Rissspitze schrumpfenden Integrationspfad, jedoch bleibt im Gegensatz zu T* der dissipative Anteil der Formänderungsarbeit im Integranden unberücksichtigt Mit der Methode der virtuellen Risserweiterung wurden die beide Parameter auf eine zur Programmierung geeignetere Form gebracht. Die Untersuchungen erstreckten sich über Nachrechnungen von WPS-Versuchen und Analysen von einem Reaktordruckbehälter bei Thermoschockbelastung. Insgesamt zeigten die durchgeführten Untersuchungen, dass die alleinige Überprüfung der Weg- und Gebietsunabhängigkeit noch keine einheitlichen Parameter gewährleistet. Erstreckt sich das Integrationsgebiet ”Integraler Parameter”, deren Integranden Ortsableitungen der Spannungs- oder Dehnungskomponenten enthalten, bis an die Rissspitze, so wirkt sich eine Änderung der Integrationsordnung oder der Vernetzung stark auf die berechneten Werte aus. Es war nicht möglich den theoretisch geforderten Grenzübergang an die Rissspitze durchzuführen. Um einheitliche Werte zu erhalten, musste eine 2x2 Integrationsordnung gewählt werden und der Korrekturtermbeitrag eines endlichen Gebietes unberücksichtigt bleiben. Die so ermittelten Parameterwerte waren dann nahezu netzunabhängig.
  • Thumbnail Image
    ItemOpen Access
    Fortgeschrittene Methoden zur Bewertung des schmelzenspezifischen Zeitstandbruchverhaltens von Werkstoffen des Kraftwerkbaus
    (2012) Frolova, Olga; Maile, Karl (Prof. Dr.-Ing. habil.)
    Bei Anlagen, die im Zeitstandbereich betrieben werden, wie z. B. Dampfkraftwerken stellt die Lebensdauerbewertung der hochbelasteten Hochtemperatur-Komponenten eine wichtige Aufgabenstellung dar. Sie steht im Zusammenhang mit der Verfügbarkeit und damit der Wirtschaftlichkeit und dem Wirkungsgrad, es werden aber auch Aspekte der Betreiberverantwortung abgedeckt. Eine zentrale Problemstellung ist in diesem Kontext die zuverlässige Erfassung und Umsetzung der hierfür notwendigen spezifischen Materialeigenschaften. Im Vordergrund steht hierbei die Festigkeitseigenschaften, ganz besonders aber das zeitabhängige Verformungs- und Bruchverhalten der eingesetzten warmfesten Stähle. Die Festigkeitseigenschaften sind das Resultat wechselseitiger Beeinflussungen, d.h. mehrdimensionaler Abhängigkeiten zwischen den einzelnen Elementen der chemischen Zusammensetzung, der Parameter der Wärmebehandlung und den Herstellbedingungen, d.h. der Erzeugnisform. Die herkömmlichen analytischen Methoden können die Auswirkung dieser Parameter auf den Kennwert, z. B. die Zeitstandbruchfestigkeit nicht ganzheitlich beschreiben. Die individuelle, d. h. schmelzenspezifische Zeitstandbruchfestigkeit kann nach dem Stand der Technik und Wissens daher zuverlässig nur über experimentelle Untersuchungen ermittelt werden. Aus der Literatur sind erfolgreiche Versuche bekannt, mit Hilfe von künstlichen Neuronalen Netzen (kNN) das Werkstoffverhalten in Abhängigkeit von Eingangsgrößen wie chemische Zusammensetzung und Wärmebehandlung, zu simulieren. Die Modellierung mit kNN stellt damit eine Alternative zu den analytischen Methoden dar, da damit mehrdimensionale Zusammenhänge erfasst werden können. Die vorliegende Arbeit hat das Ziel das Potenzial der Anwendung von kNN auf die Bestimmung von maßgebenden Eigenschaften ausgewählter warmfester Stähle zu ermitteln und zu bewerten. Der Schwerpunkt der Untersuchungen wurde auf die optimierte Vorhersage des Zeitstandbruchverhaltens und die Bestimmung der Position der spezifischen Schmelze in dem Streuband des jeweiligen Stahls unter Berücksichtigung aller technisch erfassbaren Parameter gesetzt. Ein wichtiger Ausgangspunkt einer Datenanalyse stellt die Datenbasis selbst dar. Mit der Wahl der Stähle P91, P92 und E911 wurden folgende Ziele erreicht: • die durchgeführten Zeitstandversuche, die die Datengrundlage bilden, entsprechen den Anforderungen der heute gültigen Qualitätsmaßstäben für die Versuchsdurchführung • es wurden Daten von modernen Stählen mit unterschiedlicher Zeitstandfestigkeit, aber vergleichbarer metallurgischen Grundstruktur verwendet • die vorhandenen Ergebnisse für den Stahl X20CrMoV12-1 können einbezogen werden. Vor Verwendung wurden die Daten auf ihre Konsistenz geprüft und in Ebenen mit unterschiedlichen Merkmalen aufgeteilt. Als Merkmale wurden die einzelnen Elemente der chemischen Zusammensetzung, die Parameter der Wärmebehandlung, mechanisch-technologische Kennwerte, die Zeitstandfestigkeit bzw. Zeitstandbruchzeit und der zugehörigen Versuchstemperatur, die Zeitstandbruchdehnung, Mikrostrukturparameter verwendet. Danach wurden mit einem Teil der Daten verschiedene Modelle des kNN trainiert, wobei folgende Zielgrößen verwendet wurden: Zeitstandfestigkeit, Zeitstandbruchzeit, Streckgrenze bei Raumtemperatur. Diese Modelle wurden mit den ermittelten unterschiedlichen Datenebenen trainiert. Das Vorhaben stellte erstmals die Modellierung mit dem kNN den Ergebnissen auf der Basis einer Multiplen Linearen Regressionsanalyse gegenüber. Dabei zeigte sich, dass das kNN ein besseres Korrelationsverhalten aufweist, weil es die mehrdimensionalen Abhängigkeiten zwischen den einzelnen Elementen besser wiedergibt. Die Interpretationen des kNNs wurden dahingehend geprüft, ob die grundlegenden physikalischen und metallurgischen Hintergründe ausreichend reflektiert werden. Die Ergebnisse wurden mit den realen Materialverhalten verglichen und die Auswirkung bei der Lebensdaueranalyse quantifiziert. Hierzu wurde eine „künstliche“ Schmelze definiert, die den Mittelwert aller berücksichtigten Merkmale repräsentierte. Die Verifikation der Modelle mit der Zielgröße Zeitstandfestigkeit erfolgte auf der Basis von experimentellen Daten, die nicht im Datenpool für das Trainieren des kNN enthalten waren. Dabei ergab sich teilweise eine gute Übereinstimmung. Zusammenfassend kann festgestellt werden, dass die Anwendung von kNN zur Ermittlung des individuellen Zeitstandbruchverhaltens bei modernen warmfesten Stählen ein Anwendungspotenzial aufweist, das mit der Absicherung der Datenbasis besonders im Bereich langer Bruchzeiten > 50 000 h eine technische Relevanz zeigen wird. Im Hinblick auf die technische Anwendung im Rahmen einer Lebensdauerberechnung stellt sich das Problem, dass es methodenbedingt keine Abschätzung der Unsicherheit der ermittelten Kennwerte gibt, die der seitherigen Vorgehensweise direkt vergleichbar ist.
  • Thumbnail Image
    ItemOpen Access
    Übergreifungsstöße geschweißter Betonstahlmatten
    (1976) Rehm, Gallus; Eligehausen, Rolf; Tewes, Rüdiger
    Bei der Neufassung von DIN 1045 lagen keine ausreichenden Versuchsergebnisse oder Erfahrungen vor, um die in § 18.4.1.6 festgelegten Regelungen für die Ausbildung von Übergreifungsstößen geschweißter Betonstahlmatten in allen Einzelheiten zu begründen. Für "Tragstäbe" wurden Mindestwerte für die Übergreifungslänge sowie die Anzahl der erforderlichen Querstäbe festgelegt. Diese sind vom Stabdurchmesser, der Profilierungsart und dem Ausnutzungsgrad des Stoßes abhängig. Die offen gebliebenen Fragen hinsichtlich des Einflusses der Anzahl der im Stoßbereich liegenden angeschweißten Querstäbe sowie des Abstands der Tragstäbe sollten durch Versuche geklärt werden. Außerdem sollte die Berechtigung der bestehenden Unterscheidung zwischen glatten, profilierten und gerippten Stäben überprüft werden.