13 Zentrale Universitätseinrichtungen

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/14

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Visual analysis of droplet dynamics in large-scale multiphase spray simulations
    (2021) Heinemann, Moritz; Frey, Steffen; Tkachev, Gleb; Straub, Alexander; Sadlo, Filip; Ertl, Thomas
    We present a data-driven visual analysis approach for the in-depth exploration of large numbers of droplets. Understanding droplet dynamics in sprays is of interest across many scientific fields for both simulation scientists and engineers. In this paper, we analyze large-scale direct numerical simulation datasets of the two-phase flow of non-Newtonian jets. Our interactive visual analysis approach comprises various dedicated exploration modalities that are supplemented by directly linking to ParaView. This hybrid setup supports a detailed investigation of droplets, both in the spatial domain and in terms of physical quantities. Considering a large variety of extracted physical quantities for each droplet enables investigating different aspects of interest in our data. To get an overview of different types of characteristic behaviors, we cluster massive numbers of droplets to analyze different types of occurring behaviors via domain-specific pre-aggregation, as well as different methods and parameters. Extraordinary temporal patterns are of high interest, especially to investigate edge cases and detect potential simulation issues. For this, we use a neural network-based approach to predict the development of these physical quantities and identify irregularly advected droplets.
  • Thumbnail Image
    ItemOpen Access
    Accelerated 2D visualization using adaptive resolution scaling and temporal reconstruction
    (2023) Becher, Michael; Heinemann, Moritz; Marmann, Thomas; Reina, Guido; Weiskopf, Daniel; Ertl, Thomas
    Data visualization relies on efficient rendering to allow users to interactively explore and understand their data. However, achieving interactive frame rates is often challenging, especially for high-resolution displays or large datasets. In computer graphics, several methods temporally reconstruct full-resolution images from multiple consecutive lower-resolution frames. Besides providing temporal image stability, they amortize the rendering costs over multiple frames and thus improve the minimum frame rate. We present a method that adopts this idea to accelerate 2D information visualization, without requiring any changes to the rendering itself. By exploiting properties of orthographic projection, our method significantly improves rendering performance while minimizing the loss of image quality during camera manipulation. For static scenes, it quickly converges to the full-resolution image. We discuss the characteristics and different modes of our method concerning rendering performance and image quality and the corresponding trade-offs. To improve ease of use, we provide automatic resolution scaling in our method to adapt to user-defined target frame rate. Finally, we present extensive rendering benchmarks to examine real-world performance for examples of parallel coordinates and scatterplot matrix visualizations, and discuss appropriate application scenarios and contraindications for usage.
  • Thumbnail Image
    ItemOpen Access
    Power overwhelming : the one with the oscilloscopes
    (2024) Gralka, Patrick; Müller, Christoph; Heinemann, Moritz; Reina, Guido; Weiskopf, Daniel; Ertl, Thomas
    Visualization as a discipline has to investigate its practical implications in a world steadily moving toward greener computing methods. Quantifying the power consumption of visualization algorithms is thus essential, given the ever-increasing energy needs of GPUs. Previous approaches rely on integrated sensors or invasive methods that require modifications and special test setups. However, they still suffer from imprecision from low sampling rates and integration over time. Using a high-precision, high-frequency setup via steerable oscilloscopes, we can objectively measure the resulting quality of previous approaches. This is essential to establish a ground truth, pave the way for improved modeling of power consumption in general, and enable better estimates based on the output of lower-quality sensors. We finally discuss benefits that can be drawn from the additional insight of the higher-precision setup and which additional use cases can justify the incurred costs.