13 Zentrale Universitätseinrichtungen

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/14

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Visual analytics for nonlinear programming in robot motion planning
    (2022) Hägele, David; Abdelaal, Moataz; Oguz, Ozgur S.; Toussaint, Marc; Weiskopf, Daniel
    Nonlinear programming is a complex methodology where a problem is mathematically expressed in terms of optimality while imposing constraints on feasibility. Such problems are formulated by humans and solved by optimization algorithms. We support domain experts in their challenging tasks of understanding and troubleshooting optimization runs of intricate and high-dimensional nonlinear programs through a visual analytics system. The system was designed for our collaborators’ robot motion planning problems, but is domain agnostic in most parts of the visualizations. It allows for an exploration of the iterative solving process of a nonlinear program through several linked views of the computational process. We give insights into this design study, demonstrate our system for selected real-world cases, and discuss the extension of visualization and visual analytics methods for nonlinear programming.
  • Thumbnail Image
    ItemOpen Access
    Visual analysis of fitness landscapes in architectural design optimization
    (2024) Abdelaal, Moataz; Galuschka, Marcel; Zorn, Max; Kannenberg, Fabian; Menges, Achim; Wortmann, Thomas; Weiskopf, Daniel; Kurzhals, Kuno
    In architectural design optimization, fitness landscapes are used to visualize design space parameters in relation to one or more objective functions for which they are being optimized. In our design study with domain experts, we developed a visual analytics framework for exploring and analyzing fitness landscapes spanning data, projection, and visualization layers. Within the data layer, we employ two surrogate models and three sampling strategies to efficiently generate a wide array of landscapes. On the projection layer, we use star coordinates and UMAP as two alternative methods for obtaining a 2D embedding of the design space. Our interactive user interface can visualize fitness landscapes as a continuous density map or a discrete glyph-based map. We investigate the influence of surrogate models and sampling strategies on the resulting fitness landscapes in a parameter study. Additionally, we present findings from a user study ( N = 12), revealing how experts’ preferences regarding projection methods and visual representations may be influenced by their level of expertise, characteristics of the techniques, and the specific task at hand. Furthermore, we demonstrate the usability and usefulness of our framework by a case study from the architecture domain, involving one domain expert.