13 Zentrale Universitätseinrichtungen
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/14
Browse
Search Results
Item Open Access Characterisation of adobe and mud-straw for the restoration and rehabilitation of Persian historical adobe buildings(2024) Hejazi, Bina; Luz, Corinna; Grüner, Friedrich; Frick, Jürgen; Garrecht, HaraldIn the restoration or rehabilitation of traditional buildings, compatible materials with known characteristics must be used. However, the existing literature lacks comprehensive studies on the characterisation of Persian mud-straw plaster, focusing primarily on Persian adobe. Moreover, previous research on Persian adobe has primarily employed XRF and XRD tests, neglecting ion chromatography, moisture sorption isotherm determination, and thermogravimetric analysis with differential scanning calorimetry. Consequently, there is a shortage of information regarding the elemental composition, mineralogical characteristics, moisture sorption behaviour, and thermal properties of Persian mud–straw plaster, as well as Persian adobe bricks. This paper aims to address this research gap by examining historical and new adobe bricks and mud–straw plaster used in Iran, utilising a comprehensive array of analytical techniques. The results from XRF analysis reveal relatively similar chemical compositions across all samples, while XRD analysis indicates predominantly similar mineral phases. Ion chromatography results demonstrate higher conductivity and chloride concentrations in the mud–straw samples than the adobe samples, with higher values for new samples than historical ones. Freshly used straw, clay, or soil may have higher chloride concentrations caused by the arid climate and soil salinisation in the area. Additionally, moisture sorption isotherm determination results show that adobe and mud–straw plaster with a higher salt load of chlorides have significantly higher moisture absorption. The increased straw quantity in the samples increases the moisture content. Furthermore, thermogravimetric analysis and differential scanning calorimetry indicate that, at low heating, adobe and mud–straw plaster lose water due to dehydration, and at high heating, they lose carbon dioxide due to decarboxylation. The comprehensive characterisation of Persian adobe and mud–straw plaster in this study fills a significant gap in the literature and offers invaluable insights for informing restoration and rehabilitation processes, ensuring the compatibility of the materials used.Item Open Access Impact of wind pressure coefficients on the natural ventilation effectiveness of buildings through simulations(2024) Sakiyama, Nayara Rodrigues Marques; Carlo, Joyce Correna; Sakiyama, Felipe Isamu Harger; Abdessemed, Nadir; Frick, Jürgen; Garrecht, HaraldNatural Ventilation Effectiveness (NVE) is a performance metric that quantifies when outdoor airflows can be used as a cooling strategy to achieve indoor thermal comfort. Based on standard ventilation threshold and building energy simulation (BES) models, the NVE relates available and required airflows to quantify the usefulness of natural ventilation (NV) through design and building evaluation. Since wind is a significant driving force for ventilation, wind pressure coefficients (Cp) represent a critical boundary condition when assessing building airflows. Therefore, this paper investigates the impact of different Cp sources on wind-driven NVE results to see how sensitive the metric is to this variable. For that, an experimental house and a measurement period were used to develop and calibrate the initial BES model. Four Cp sources are considered: an analytical model from the BES software (i), surface-averaged Cp values for building windows that were calculated with Computational Fluid Dynamics (CFD) simulations using OpenFOAM through a cloud-based platform (iia,b,c), and two databases-AIVC (iii) and Tokyo Polytechnic University (TPU) (iv). The results show a variance among the Cp sources, which directly impacts airflow predictions; however, its effect on the performance metric was relatively small. The variation in the NVE outcomes with different Cp’s was 3% at most, and the assessed building could be naturally ventilated around 75% of the investigated time on the first floor and 60% in the ground floor spaces.