13 Zentrale Universitätseinrichtungen
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/14
Browse
Search Results
Item Open Access Accelerated 2D visualization using adaptive resolution scaling and temporal reconstruction(2023) Becher, Michael; Heinemann, Moritz; Marmann, Thomas; Reina, Guido; Weiskopf, Daniel; Ertl, ThomasData visualization relies on efficient rendering to allow users to interactively explore and understand their data. However, achieving interactive frame rates is often challenging, especially for high-resolution displays or large datasets. In computer graphics, several methods temporally reconstruct full-resolution images from multiple consecutive lower-resolution frames. Besides providing temporal image stability, they amortize the rendering costs over multiple frames and thus improve the minimum frame rate. We present a method that adopts this idea to accelerate 2D information visualization, without requiring any changes to the rendering itself. By exploiting properties of orthographic projection, our method significantly improves rendering performance while minimizing the loss of image quality during camera manipulation. For static scenes, it quickly converges to the full-resolution image. We discuss the characteristics and different modes of our method concerning rendering performance and image quality and the corresponding trade-offs. To improve ease of use, we provide automatic resolution scaling in our method to adapt to user-defined target frame rate. Finally, we present extensive rendering benchmarks to examine real-world performance for examples of parallel coordinates and scatterplot matrix visualizations, and discuss appropriate application scenarios and contraindications for usage.Item Open Access Visual ensemble analysis of fluid flow in porous media across simulation codes and experiment(2023) Bauer, Ruben; Ngo, Quynh Quang; Reina, Guido; Frey, Steffen; Flemisch, Bernd; Hauser, Helwig; Ertl, Thomas; Sedlmair, MichaelWe study the question of how visual analysis can support the comparison of spatio-temporal ensemble data of liquid and gas flow in porous media. To this end, we focus on a case study, in which nine different research groups concurrently simulated the process of injecting CO 2into the subsurface. We explore different data aggregation and interactive visualization approaches to compare and analyze these nine simulations. In terms of data aggregation, one key component is the choice of similarity metrics that define the relationship between different simulations. We test different metrics and find that using the machine-learning model “S4” (tailored to the present study) as metric provides the best visualization results. Based on that, we propose different visualization methods. For overviewing the data, we use dimensionality reduction methods that allow us to plot and compare the different simulations in a scatterplot. To show details about the spatio-temporal data of each individual simulation, we employ a space-time cube volume rendering. All views support linking and brushing interaction to allow users to select and highlight subsets of the data simultaneously across multiple views. We use the resulting interactive, multi-view visual analysis tool to explore the nine simulations and also to compare them to data from experimental setups. Our main findings include new insights into ranking of simulation results with respect to experimental data, and the development of gravity fingers in simulations.