13 Zentrale Universitätseinrichtungen
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/14
Browse
Search Results
Item Open Access STEP : sequence of time-aligned edge plots(2024) Abdelaal, Moataz; Kannenberg, Fabian; Lhuillier, Antoine; Hlawatsch, Marcel; Menges, Achim; Weiskopf, DanielWe present sequence of time-aligned edge plots (STEP) : a sequence- and edge-scalable visualization of dynamic networks and, more broadly, graph ensembles. We construct the graph sequence by ordering the individual graphs based on specific criteria, such as time for dynamic networks. To achieve scalability with respect to long sequences, we partition the sequence into equal-sized subsequences. Each subsequence is represented by a horizontal axis placed between two vertical axes. The horizontal axis depicts the order within the subsequence, while the two vertical axes depict the source and destination vertices. Edges within each subsequence are depicted as segmented lines extending from the source vertices on the left to the destination vertices on the right throughout the entire subsequence, and only the segments corresponding to the sequence members where the edges occur are drawn. By partitioning the sequence, STEP provides an overview of the graphs’ structural changes and avoids aspect ratio distortion. We showcase the utility of STEP for two realistic datasets. Additionally, we evaluate our approach by qualitatively comparing it against three state-of-the-art techniques using synthetic graphs with varying complexities. Furthermore, we evaluate the generalizability of STEP by applying it to a graph ensemble dataset from the architecture domain.Item Open Access Visual analysis of fitness landscapes in architectural design optimization(2024) Abdelaal, Moataz; Galuschka, Marcel; Zorn, Max; Kannenberg, Fabian; Menges, Achim; Wortmann, Thomas; Weiskopf, Daniel; Kurzhals, KunoIn architectural design optimization, fitness landscapes are used to visualize design space parameters in relation to one or more objective functions for which they are being optimized. In our design study with domain experts, we developed a visual analytics framework for exploring and analyzing fitness landscapes spanning data, projection, and visualization layers. Within the data layer, we employ two surrogate models and three sampling strategies to efficiently generate a wide array of landscapes. On the projection layer, we use star coordinates and UMAP as two alternative methods for obtaining a 2D embedding of the design space. Our interactive user interface can visualize fitness landscapes as a continuous density map or a discrete glyph-based map. We investigate the influence of surrogate models and sampling strategies on the resulting fitness landscapes in a parameter study. Additionally, we present findings from a user study ( N = 12), revealing how experts’ preferences regarding projection methods and visual representations may be influenced by their level of expertise, characteristics of the techniques, and the specific task at hand. Furthermore, we demonstrate the usability and usefulness of our framework by a case study from the architecture domain, involving one domain expert.Item Open Access Power overwhelming : the one with the oscilloscopes(2024) Gralka, Patrick; Müller, Christoph; Heinemann, Moritz; Reina, Guido; Weiskopf, Daniel; Ertl, ThomasVisualization as a discipline has to investigate its practical implications in a world steadily moving toward greener computing methods. Quantifying the power consumption of visualization algorithms is thus essential, given the ever-increasing energy needs of GPUs. Previous approaches rely on integrated sensors or invasive methods that require modifications and special test setups. However, they still suffer from imprecision from low sampling rates and integration over time. Using a high-precision, high-frequency setup via steerable oscilloscopes, we can objectively measure the resulting quality of previous approaches. This is essential to establish a ground truth, pave the way for improved modeling of power consumption in general, and enable better estimates based on the output of lower-quality sensors. We finally discuss benefits that can be drawn from the additional insight of the higher-precision setup and which additional use cases can justify the incurred costs.Item Open Access mint : integrating scientific visualizations into virtual reality(2024) Geringer, Sergej; Geiselhart, Florian; Bäuerle, Alex; Dec, Dominik; Odenthal, Olivia; Reina, Guido; Ropinski, Timo; Weiskopf, DanielWe present an image-based approach to integrate state-of-the-art scientific visualization into virtual reality (VR) environments: the mint visualization/VR inter-operation system. We enable the integration of visualization algorithms from within their software frameworks directly into VR without the need to explicitly port visualization implementations to the underlying VR framework—thus retaining their capabilities, specializations, and optimizations. Consequently, our approach also facilitates enriching VR-based scientific data exploration with established or novel VR immersion and interaction techniques available in VR authoring tools. The separation of concerns enables researchers and users in different domains, like virtual immersive environments, immersive analytics, and scientific visualization, to independently work with existing software suitable for their domain while being able to interface with one another easily. We present our system architecture and inter-operation protocol (mint), an example of a collaborative VR environment implemented in the Unity engine (VRAUKE), as well as the integration of the protocol for the visualization frameworks Inviwo, MegaMol, and ParaView. Our implementation is publicly available as open-source software.