13 Zentrale Universitätseinrichtungen
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/14
Browse
9 results
Search Results
Item Open Access Testing and evaluation of anchor channels under fatigue loading(2020) Fröhlich, Thilo; Lotze, DieterCast-in anchor channels are used to connect steel components to concrete structures e.g., for elevators, cranes or machines, where repeated load cycles require verification against fatigue failure. The fatigue resistance of anchor channels may be determined by tests according to the interactive method, which provides a complete description of the S/N curve from one to infinite load cycles according to the current assessment document. This procedure differs from conventional fatigue concepts, which do not consider loads that are part of low cycle fatigue, but also question the general existence of an endurance limit. An alternative approach presented in this paper is based on the assumption that the S/N curve can be approximated by a bilinear function. The procedure for the evaluation of fatigue tests on anchor channels embedded in concrete is described. A comparison with the current qualification criteria is given by a test example to discuss the applicability of the proposed method.Item Open Access Effect of weld length on strength, fatigue behaviour and microstructure of intersecting stitch-friction stir welded AA 6016-T4 sheets(2023) Walz, Dominik; Göbel, Robin; Werz, Martin; Weihe, StefanFriction stir welding is a promising joining process for boosting lightweight construction in the industrial and automotive sector by enabling the weldability of high-strength aluminum alloys. However, the high process forces usually result in large and heavy equipment for this joining method, which conflicts with flexible application. In order to circumvent this issue, a friction stir welding gun has been developed which is capable of producing short stitch welds-either stand-alone as an alternative to spot welds or merging into each other appearing like a conventional friction stir weld. In this study, the influence of the stitch seam length on the strength properties of intersecting friction stir welds is investigated, and the weld is characterized. For this purpose, EN AW-6016 T4 sheets were welded in butt joint configuration with varying stitch lengths between 2 and 15 mm. Both the static and dynamic strength properties were investigated, and hardness and temperature measurements were carried out. The results show a scalability of the tensile strength as well as the fatigue strength over the stitch seam length, while the substitute proof strength is not affected. Hereby, the tensile strength reached up 80% of the base materials tensile strength with the chosen parameter setup. Likewise, the stitch weld length influences the hardness characteristics of the welds in the transition area.Item Open Access Investigation of tool degradation during friction stir welding of hybrid aluminum-steel sheets in a combined butt and overlap joint(2024) Göbel, Robin; Schwertel, Stefanie; Weihe, Stefan; Werz, MartinFriction stir welding, as a solid-state welding technique, is especially suitable for effectively joining high-strength aluminum alloys, as well as for multi-material welds. This research investigates the friction stir welding of thin aluminum and steel sheets, an essential process in the production of hybrid tailor-welded blanks employed in deep drawing applications. Despite its proven advantages, the welding process exhibits variable outcomes concerning formability and joint strength when utilizing an H13 welding tool. To better understand these inconsistencies, multiple welds were performed in this study, joining 1 mm thick steel to 2 mm thick aluminum sheets, with a cumulative length of 7.65 m. The accumulation of material on the welding tool was documented through 3D scanning and weighing. The integrity of the resulting weld seam was analyzed through metallographic sections and X-ray imaging. It was found that the adhering material built up continuously around the tool pin over several welds totaling between 1.5 m and 2.5 m before ultimately detaching. This accretion of material notably affected the welding process, resulting in increased intermixing of steel particles within the aluminum matrix. This research provides detailed insights into the dynamics of friction stir welding in multi-material welds, particularly in the context of tool material interaction and its impact on weld quality.Item Open Access Experimental investigation on the fatigue design of anchor channels(2022) Fröhlich, Thilo; Lotze, DieterCast‐in anchor channels subjected to repeated cyclic actions need to be verified against fatigue failure. However, the fatigue behavior of these fasteners has rarely been investigated up to now. Consequently, the fatigue verification is not covered by the provisions of EN 1992‐4 and specific design rules apply for this product. This article gives a brief overview of the current design methods for anchor channels under fatigue loading and addresses its limitations. Results of experimental investigations within a recent research project are presented that focused on the fatigue resistance of fastenings under combined static and fatigue loading. Accompanying strain measurements provide insights about the distribution of cyclic tension loads through the channel profile to the anchors. In addition, tests under pulsating and alternating shear perpendicular to the channel axis were performed to outline the suitability under fatigue relevant shear loads. The test results obtained are discussed with respect to the existing state of knowledge. Finally, recommendations for the fatigue design of anchor channels are given.Item Open Access Anisotropy of the tribological performance of periodically oxidated laser-induced periodic surface structures(2023) Onufrijevs, Pavels; Grase, Liga; Padgurskas, Juozas; Rukanskis, Mindaugas; Durena, Ramona; Willer, Dieter; Iesalnieks, Mairis; Lungevics, Janis; Kaupuzs, Jevgenijs; Rukuiža, Raimundas; Kriūkienė, Rita; Hanesch, Yuliya; Speicher, MagdalenaLaser-induced periodic surface structures (LIPSS) enable advanced surface functionalization with broad applications in various fields such as micro- and nanoelectronics, medicine, microbiology, tribology, anti-icing systems, and more. This study demonstrates the possibility of achieving anisotropy in the tribological behavior of C45-grade steel structured by nanosecond laser radiation using the LIPSS method. The lateral surface of the steel roller was irradiated with a pulsed Nd:YAG laser at an optimum intensity I = 870 MW/cm2 for the formation of LIPSS. Two sets of samples were formed with LIPSS that were perpendicular and parallel to the roller’s rotational motion direction. The Raman intensity maps revealed that the LIPSS structure consisted of periodically arranged oxides at the top of hills. At the same time, the valleys of the LIPSS structures were almost not oxidized. These results correlated well with scanning electron microscopy energy dispersive X-ray spectroscopy mapping and atomic force microscopy measurements. A comparison of Raman and X-ray photoelectron spectroscopy spectra revealed that both the magnetite phase and traces of the hematite phase were present on the surface of the samples. Tribological tests were performed in two cycles with periodic changes in the normal clamping force and sliding speed. It was found that the LIPSS structures which were formed perpendicularly to the sliding direction on the roller had a significantly greater impact on the friction processes. Structures oriented perpendicular to the direction of motion had a positive influence on reducing the energy consumption of a friction process as well as increasing the wear resistance compared to LIPSS formed parallel to the direction of motion or ones having a non-texturized surface. Laser texturing to produce LIPSS perpendicular to the direction of motion could be recommended for friction pairs operating under low-load conditions.Item Open Access Analysis of hydrogen-induced changes in the cyclic deformation behavior of AISI 300-series austenitic stainless steels using cyclic indentation testing(2021) Brück, Sven; Blinn, Bastian; Diehl, Katharina; Wissing, Yannick; Müller, Julian; Schwarz, Martina; Christ, Hans-Jürgen; Beck, Tilmann; Staedler, Thorsten; Jiang, Xin; Butz, Benjamin; Weihe, StefanThe locally occurring mechanisms of hydrogen embrittlement significantly influence the fatigue behavior of a material, which was shown in previous research on two different AISI 300-series austenitic stainless steels with different austenite stabilities. In this preliminary work, an enhanced fatigue crack growth as well as changes in crack initiation sites and morphology caused by hydrogen were observed. To further analyze the results obtained in this previous research, in the present work the local cyclic deformation behavior of the material volume was analyzed by using cyclic indentation testing. Moreover, these results were correlated to the local dislocation structures obtained with transmission electron microscopy (TEM) in the vicinity of fatigue cracks. The cyclic indentation tests show a decreased cyclic hardening potential as well as an increased dislocation mobility for the conditions precharged with hydrogen, which correlates to the TEM analysis, revealing courser dislocation cells in the vicinity of the fatigue crack tip. Consequently, the presented results indicate that the hydrogen enhanced localized plasticity (HELP) mechanism leads to accelerated crack growth and change in crack morphology for the materials investigated. In summary, the cyclic indentation tests show a high potential for an analysis of the effects of hydrogen on the local cyclic deformation behavior.Item Open Access Micro-twinning in IN738LC manufactured with laser powder bed fusion(2023) Megahed, Sandra; Krämer, Karl Michael; Kontermann, Christian; Heinze, Christoph; Udoh, Annett; Weihe, Stefan; Oechsner, MatthiasComponents manufactured with Metal Laser Powder Bed Fusion (PBF-LB/M) are built in a layerwise fashion. The PBF-LB/M build orientation affects grain morphology and orientation. Depending on the build orientation, microstructures from equiaxed to textured grains can develop. In the case of a textured microstructure, a clear anisotropy of the mechanical properties affecting short- and long-term mechanical properties can be observed, which must be considered in the component design. Within the scope of this study, the IN738LC tensile and creep properties of PBF-LB/M samples manufactured in 0° (perpendicular to build direction), 45° and 90° (parallel to build direction) build orientations were investigated. While the hot tensile results (at 850 °C) are as expected, where the tensile properties of the 45° build orientation lay between those of 0° and 90°, the creep results (performed at 850 °C and 200 MPa) of the 45° build orientation show the least time to rupture. This study discusses the microstructural reasoning behind the peculiar creep behavior of 45° oriented IN738LC samples and correlates the results to heat-treated microstructures and the solidification conditions of the PBF-LB/M process itself.Item Open Access On friction, heat input, and material flow initiation during friction stir welding : tool and process optimization(2023) Hossfeld, MaxThe Friction Stir Welding (FSW) process depends entirely upon mechanical contact between the tool and the workpiece. As a result of this, all process phenomena and process outcomes such as weld geometry and mechanical properties are governed by FSW’s frictional system. The following work characterizes this system with a focus on process initialization, heat input and material flow. For this purpose, an experimental program for the isolated investigation of the frictional system was carried out. Short-term effects such as contact initiation, run-in behavior and frictional transitions are considered as well as the influences of process parameters and geometry. The system and its behavior are analyzed quantitatively and qualitatively by experiments altering the normal pressure, relative velocity, and tool geometry. The experiments demonstrate a self-similar behavior of the process, including an important wear transition which initiates the material flow, and a subsequent equilibrium of forces, heat balance, and temperatures. The interaction between the tool and the welded material is described, as is the link between the frictional interface and material flow initialization. Based on these findings, recommendations are provided for process optimization and tool design.Item Open Access A universal framework for skill-based cyber-physical production systems(2024) Hossfeld, Max; Wortmann, AndreasIn the vision of smart manufacturing and Industry 4.0, it is vital to automate production processes. There is a significant gap in current practices, where the derivation of production processes from product data still heavily relies on human expertise, leading to inefficiencies and a shortage of skilled labor. This paper proposes a universal framework for skill-based cyber-physical production systems (CPPS) that formalizes production knowledge into machine-processable formats. Key contributions include a novel conceptual model for skill-based production processes and an automated method to derive production plans from high-level CPPS skills for production planning and execution. This framework aims to enhance smart manufacturing by enabling more efficient, transparent, and automated production planning, thereby addressing the critical gap in current manufacturing practices. The framework’s benefits include making production processes explainable, optimizing multi-criteria systems, and eliminating human biases in process selection. A case study illustrates the framework’s application, demonstrating its current capabilities and potential for modern manufacturing.