13 Zentrale Universitätseinrichtungen
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/14
Browse
20 results
Search Results
Item Open Access Schaustücke : Einblicke in wissenschaftliche Sammlungen der Universität Stuttgart(Stuttgart : Universität Stuttgart, 2022) Wiatrowski, Frank (Gestaltung, Fotograf); Engstler, Katja Stefanie (Gestaltung); Ceranski, Beate (Vorwort); Rambach, Christiane (Vorwort)Die wissenschaftlichen Sammlungen der Universität zeugen von einer langen Lehr- und Forschungstradition. In Fakultäten und Instituten, in der Universitätsbibliothek und im Universitätsarchiv sind vielfältige Sammlungen beheimatet, zum Teil mit ungewöhnlichen oder gar einzigartigen Objekten. Die Broschüre gibt erste Einblicke in diese vielfach versteckte Welt der universitären Sammlungen in Stuttgart.Item Open Access Performance comparison of CFD microbenchmarks on diverse HPC architectures(2024) Galeazzo, Flavio C. C.; Garcia-Gasulla, Marta; Boella, Elisabetta; Pocurull, Josep; Lesnik, Sergey; Rusche, Henrik; Bnà, Simone; Cerminara, Matteo; Brogi, Federico; Marchetti, Filippo; Gregori, Daniele; Weiß, R. Gregor; Ruopp, AndreasOpenFOAM is a CFD software widely used in both industry and academia. The exaFOAM project aims at enhancing the HPC scalability of OpenFOAM, while identifying its current bottlenecks and proposing ways to overcome them. For the assessment of the software components and the code profiling during the code development, lightweight but significant benchmarks should be used. The answer was to develop microbenchmarks, with a small memory footprint and short runtime. The name microbenchmark does not mean that they have been prepared to be the smallest possible test cases, as they have been developed to fit in a compute node, which usually has dozens of compute cores. The microbenchmarks cover a broad band of applications: incompressible and compressible flow, combustion, viscoelastic flow and adjoint optimization. All benchmarks are part of the OpenFOAM HPC Technical Committee repository and are fully accessible. The performance using HPC systems with Intel and AMD processors (x86_64 architecture) and Arm processors (aarch64 architecture) have been benchmarked. For the workloads in this study, the mean performance with the AMD CPU is 62% higher than with Arm and 42% higher than with Intel. The AMD processor seems particularly suited resulting in an overall shorter time-to-solution.Item Open Access Theoretical-numerical investigation of a new approach to reconstruct the temperature field in PBF-LB/M using multispectral process monitoring(2024) May, Lisa; Werz, MartinThe monitoring of additive manufacturing processes such as powder bed fusion enables the detection of several process quantities important to the quality of the built part. In this context, radiation-based monitoring techniques have been used to obtain information about the melt pool and the general temperature distribution on the surface of the powder bed. High temporal and spatial resolution have been achieved at the cost of large storage requirements. This contribution aims to offer an alternative strategy of gaining information about the powder bed’s temperature field with sufficient resolution but with an economical amount of data. The investigated measurement setup uses a spectrometer to detect the spectral radiation intensities emitted by an area enclosing the melt pool and part of its surroundings. An analytical description of this process is presented, which shows that the measured spectral entities can be reconstructed by the Ritz method. It is also shown that the corresponding weighting factors can be physically interpreted as subdomains of constant temperature within the measurement area. Two different test cases are numerically analyzed, showing that the methodology allows for an approximation of the melt pool size while further assumptions remain necessary to reconstruct the actual temperature distribution.Item Open Access Characterisation of adobe and mud-straw for the restoration and rehabilitation of Persian historical adobe buildings(2024) Hejazi, Bina; Luz, Corinna; Grüner, Friedrich; Frick, Jürgen; Garrecht, HaraldIn the restoration or rehabilitation of traditional buildings, compatible materials with known characteristics must be used. However, the existing literature lacks comprehensive studies on the characterisation of Persian mud-straw plaster, focusing primarily on Persian adobe. Moreover, previous research on Persian adobe has primarily employed XRF and XRD tests, neglecting ion chromatography, moisture sorption isotherm determination, and thermogravimetric analysis with differential scanning calorimetry. Consequently, there is a shortage of information regarding the elemental composition, mineralogical characteristics, moisture sorption behaviour, and thermal properties of Persian mud–straw plaster, as well as Persian adobe bricks. This paper aims to address this research gap by examining historical and new adobe bricks and mud–straw plaster used in Iran, utilising a comprehensive array of analytical techniques. The results from XRF analysis reveal relatively similar chemical compositions across all samples, while XRD analysis indicates predominantly similar mineral phases. Ion chromatography results demonstrate higher conductivity and chloride concentrations in the mud–straw samples than the adobe samples, with higher values for new samples than historical ones. Freshly used straw, clay, or soil may have higher chloride concentrations caused by the arid climate and soil salinisation in the area. Additionally, moisture sorption isotherm determination results show that adobe and mud–straw plaster with a higher salt load of chlorides have significantly higher moisture absorption. The increased straw quantity in the samples increases the moisture content. Furthermore, thermogravimetric analysis and differential scanning calorimetry indicate that, at low heating, adobe and mud–straw plaster lose water due to dehydration, and at high heating, they lose carbon dioxide due to decarboxylation. The comprehensive characterisation of Persian adobe and mud–straw plaster in this study fills a significant gap in the literature and offers invaluable insights for informing restoration and rehabilitation processes, ensuring the compatibility of the materials used.Item Open Access Hagrid : using Hilbert and Gosper curves to gridify scatterplots(2022) Cutura, Rene; Morariu, Cristina; Cheng, Zhanglin; Wang, Yunhai; Weiskopf, Daniel; Sedlmair, MichaelA common enhancement of scatterplots represents points as small multiples, glyphs, or thumbnail images. As this encoding often results in overlaps, a general strategy is to alter the position of the data points, for instance, to a grid-like structure. Previous approaches rely on solving expensive optimization problems or on dividing the space that alter the global structure of the scatterplot. To find a good balance between efficiency and neighborhood and layout preservation, we propose Hagrid , a technique that uses space-filling curves (SFCs) to “gridify” a scatterplot without employing expensive collision detection and handling mechanisms. Using SFCs ensures that the points are plotted close to their original position, retaining approximately the same global structure. The resulting scatterplot is mapped onto a rectangular or hexagonal grid, using Hilbert and Gosper curves. We discuss and evaluate the theoretic runtime of our approach and quantitatively compare our approach to three state-of-the-art gridifying approaches, DGrid , Small multiples with gaps SMWG , and CorrelatedMultiples CMDS , in an evaluation comprising 339 scatterplots. Here, we compute several quality measures for neighborhood preservation together with an analysis of the actual runtimes. The main results show that, compared to the best other technique, Hagrid is faster by a factor of four, while achieving similar or even better quality of the gridified layout. Due to its computational efficiency, our approach also allows novel applications of gridifying approaches in interactive settings, such as removing local overlap upon hovering over a scatterplot.Item Open Access Soya yield prediction on a within-field scale using machine learning models trained on Sentinel-2 and soil data(2022) Pejak, Branislav; Lugonja, Predrag; Antić, Aleksandar; Panić, Marko; Pandžić, Miloš; Alexakis, Emmanouil; Mavrepis, Philip; Zhou, Naweiluo; Marko, Oskar; Crnojević, VladimirAgriculture is the backbone and the main sector of the industry for many countries in the world. Assessing crop yields is key to optimising on-field decisions and defining sustainable agricultural strategies. Remote sensing applications have greatly enhanced our ability to monitor and manage farming operation. The main objective of this research was to evaluate machine learning system for within-field soya yield prediction trained on Sentinel-2 multispectral images and soil parameters. Multispectral images used in the study came from ESA’s Sentinel-2 satellites. A total of 3 cloud-free Sentinel-2 multispectral images per year from specific periods of vegetation were used to obtain the time-series necessary for crop yield prediction. Yield monitor data were collected in three crop seasons (2018, 2019 and 2020) from a number of farms located in Upper Austria. The ground-truth database consisted of information about the location of the fields and crop yield monitor data on 411 ha of farmland. A novel method, namely the Polygon-Pixel Interpolation, for optimal fitting yield monitor data with satellite images is introduced. Several machine learning algorithms, such as Multiple Linear Regression, Support Vector Machine, eXtreme Gradient Boosting, Stochastic Gradient Descent and Random Forest, were compared for their performance in soya yield prediction. Among the tested machine learning algorithms, Stochastic Gradient Descent regression model performed better than the others, with a mean absolute error of 4.36 kg/pixel (0.436 t/ha) and a correlation coefficient of 0.83%.Item Open Access Residual stress formation mechanisms in laser powder bed fusion : a numerical evaluation(2023) Kaess, Moritz; Werz, Martin; Weihe, StefanAdditive manufacturing methods, such as the laser powder bed fusion, do not need any special tool or casting mold. This enables the fast realization of complex and individual geometries with integrated functions. However, the local heat input during the manufacturing process often leads to residual stresses and distortion. This in turn causes poor quality, scrap parts or can even terminate a job prematurely if the powder recoating mechanism collides with a distorted part during the process. This study investigates the generation mechanisms of residual stresses and distortion during laser powder bed fusion (LPBF) of stainless steel 316L in order to reduce these effects and thus contribute to improved process safety and efficiency. Therefore, numerical investigations with a finite element model on the scale of a few melt tracks and layers serve to develop a detailed understanding of the mechanisms during production. The work includes an investigation of the build plate temperature, the laser power and speed and the layer thickness. The results show a strong dependency on the build plate preheating and energy per unit length. A higher build plate temperature and a reduction of the energy per unit length both lead to lower residual stresses.Item Open Access Can a hand-held 3D scanner capture temperature-induced strain of mortar samples : comparison between experimental measurements and numerical simulations(2023) Haynack, Alexander; Zadran, Sekandar; Timothy, Jithender J.; Gambarelli, Serena; Kränkel, Thomas; Thiel, Charlotte; Ožbolt, Joško; Gehlen, ChristophThe expected lifespan of cement-based materials, particularly concrete, is at least 50 years. Changes in the pore structure of the material need to be considered due to external influences and associated transport processes. The expansion behaviour of concrete and mortar during freeze-thaw attacks, combined with de-icing salt agents, is crucial for both internal and external damage. It is essential to determine and simulate the expansion behaviour of these materials in the laboratory, as well as detect the slow, long-term expansion in real structures. This study measures the expansion of mortar samples during freeze-thaw loading using a high-resolution hand-held 3D laser scanner. The specimens are prepared with fully or partially saturated pore structures through water storage or drying. During freeze-thaw experiments, the specimens are exposed to pure water or a 3% sodium chloride solution (NaCl). Results show contraction during freezing and subsequent expansion during thawing. Both test solutions exhibit similar expansion behaviour, with differences primarily due to saturation levels. Further investigations are required to explore the changing expansion behaviour caused by increasing microcracking resulting from continuous freeze-thaw cycles. A numerical analysis using a 3D coupled hygro-thermo-mechanical (HTM) model is conducted to examine the freeze–thaw behaviour of the mortar. The model accurately represents the freezing deformation during the freeze–thaw cycle.Item Open Access Fatigue behavior and lifetime assessment of an austenitic stainless steel in the VHCF regime at ambient and elevated temperatures(2023) Schopf, Tim; Weihe, Stefan; Daniel, Tobias; Smaga, Marek; Beck, TilmannWhile the LCF behavior of austenitic steels used in nuclear power plants is already well investigated, the VHCF regime has not been characterized in detail so far. For this, fatigue tests on the metastable austenitic steel AISI 347/1.4550 were performed with a servo‐hydraulic testing system at test frequencies up to 980 Hz and with an ultrasonic fatigue testing system at a test frequency of 20,000 Hz. To compare these test results to the ASME standard fatigue curve (total strain amplitude vs. load cycles to failure), a fictitious‐elastic and an elastically plastic assessment method was used. The elaborated elastic-plastic assessment method generates good results, while a purely elastic assessment in the VHCF regime, commonly used in literature, leads to significantly nonconservative results. Moreover, phase transformation from metastable austenite into stable α′‐martensite can take place, and no specimen failure occurs in the VHCF regime. Consequently, for this material, a real endurance limit exists.Item Open Access Performance‐Prüfverfahren für den Sulfatwiderstand von Beton(2023) Vollpracht, Anya; Feldrappe, Volkert; Overmann, Steffen; Haufe, Johannes; Ehrenberg, Andreas; Beutel, Ralf; Matschei, ThomasDie aktuellen Normen für die Anwendung von Beton sehen deskriptive Regeln für den Einbau in sulfathaltigen Böden und Grundwässern vor. Diese Vorgehensweise schränkt die Anwendungsmöglichkeiten von neuen Bindemitteln und alternativen Betonrezepturen erheblich ein, da diese Baustoffe eine Zustimmung im Einzelfall oder eine allgemeine bauaufsichtliche Zulassung benötigen. Im Zulassungsbereich steht aktuell für die meisten Bindemittel nur das sehr zeitintensive modifizierte SVA‐Verfahren zur Verfügung, mit dem erst nach 2 Jahren Versuchslaufzeit eine Zulassung erfolgen kann. Es wurde daher ein Performance‐Prüfverfahren erarbeitet, das auf der Prüfung der Zugfestigkeit von in Sulfatlösung gelagerten Betonproben basiert. Das Verfahren wurde anhand von 23 verschiedenen Bindemitteln im Hinblick auf seine Aussagekraft untersucht und Abnahmekriterien vorgeschlagen. Derzeit werden Vergleichsuntersuchungen im Labor mit unterschiedlichen w/z‐Werten durchgeführt und es laufen Auslagerungsversuche in einem Anhydrit‐Bergwerk, wo die Proben einer Sulfatkonzentration von 1500 bis 2000 mg/l ausgesetzt sind. Die Proben wurden im Juli 2018 ausgelagert. Darüber hinaus ist ein Ringversuch in Bearbeitung. In diesem Beitrag wird über die Fortschritte zur Etablierung des Prüfverfahrens berichtet.