07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8

Browse

Search Results

Now showing 1 - 10 of 16
  • Thumbnail Image
    ItemOpen Access
    General mathematical model for the period chirp in interference lithography
    (2023) Bienert, Florian; Graf, Thomas; Abdou Ahmed, Marwan
  • Thumbnail Image
    ItemOpen Access
    Process limits for percussion drilling of stainless steel with ultrashort laser pulses at high average powers
    (2022) Brinkmeier, David; Holder, Daniel; Loescher, André; Röcker, Christoph; Förster, Daniel J.; Onuseit, Volkher; Weber, Rudolf; Abdou Ahmed, Marwan; Graf, Thomas
    The availability of commercial ultrafast lasers reaching into the kW power level offers promising potential for high-volume manufacturing applications. Exploiting the available average power is challenging due to process limits imposed by particle shielding, ambient atmosphere breakdown, and heat accumulation effects. We experimentally confirm the validity of a simple thermal model, which can be used for the estimation of a critical heat accumulation threshold for percussion drilling of AISI 304 steel. The limits are summarized in a processing map, which provides selection criteria for process parameters and suitable lasers. The results emphasize the need for process parallelization.
  • Thumbnail Image
    ItemOpen Access
    Theoretical investigation on the elimination of the period chirp by deliberate substrate deformations
    (2022) Bienert, Florian; Graf, Thomas; Abdou Ahmed, Marwan
    We present a theoretical investigation on the approach of deliberately bending the substrate during the exposure within laser interference lithography to compensate for the period chirp. It is shown that the yet undiscovered function of the surface geometry, necessary to achieve the zero-chirp case (i.e. having a perfectly constant period over the whole substrate) is determined by a first-order differential equation. As the direct analytical solution of this differential equation is difficult, a numerical approach is developed, based on the optimization of pre-defined functions towards the unknown analytical solution of the differential equation by means of a Nelder-Mead simplex algorithm. By applying this method to a concrete example, we show that an off-center placement of the substrate with respect to the point sources is advantageous both in terms of achievable period and substrate curvature and that a fourth-order polynomial can greatly satisfy the differential equation leading to a root-mean-square deviation of only 1.4 pm with respect to the targeted period of 610 nm.
  • Thumbnail Image
    ItemOpen Access
    Intra-cavity wavelength multiplexing of high-brightness thin-disk laser beams
    (2022) Boubekraoui, Ayoub; Beirow, Frieder; Graf, Thomas; Abdou Ahmed, Marwan
    We report on the first demonstration of an intra-cavity spectral beam combining of two fundamental-mode laser beams generated by a dual Yb:YAG thin-disk resonator. The two thin-disk lasers (TDLs) were operated at the two slightly different wavelengths of 1028 nm and 1032 nm. A resonant diffraction grating waveguide structure was used as common spectral stabilizer and combiner. An average power exceeding 200 W with close to diffraction-limited beam quality (M2<1.3) was obtained with the presented approach.
  • Thumbnail Image
    ItemOpen Access
    Modelling of natural convection in thin-disk lasers
    (2020) Dietrich, Tom; Röcker, Christoph; Graf, Thomas; Abdou Ahmed, Marwan
    In this paper, we present a FEM-model that can be used to investigate the effects of thermally induced natural convection at the thin-disk laser crystal. Based on this simulation, we calculated the distribution of the refractive index of the ambient gas for the case of air and helium. By evaluating the optical path difference of a beam at normal incidence, the angular tilt (gas wedge) in the plane of the direction of convection as well as the spherical contribution (gas lens) was calculated for a set of different pump spot geometries and temperatures of the pumped area on the surface of the laser disk. Equations were derived that allow to simply calculate the tilt angle and the focal length of the gas lens for different temperatures of the disk and pump spot diameters for air as ambient medium.
  • Thumbnail Image
    ItemOpen Access
    Generation of a radially polarized beam in a polycrystalline ceramic Yb:Lu2O3 thin-disk laser
    (2023) Didychenko, Denys; Esser, Stefan; Beirow, Frieder; Savchenko, Anton; Pruss, Christof; Graf, Thomas; Abdou Ahmed, Marwan
    AbstractWe report on the generation of a continuous-wave (CW) radially polarized beam with an Yb:Lu2O3 polycrystalline ceramic disk in a thin-disk laser (TDL) oscillator. A circular grating-waveguide mirror (CGWM) with a high polarization discrimination given by a reflectivity difference between the two orthogonal polarization states of 44.6% was used as a polarization-selective cavity end-mirror. An output power of 175 W was achieved with an optical efficiency of 39.6%. A high degree of radial polarization of 96.2% and a beam propagation factor of M2hor. = 2.05 and M2ver. = 2.32 were measured at the maximum output power.
  • Thumbnail Image
    ItemOpen Access
    Yb:CaF2 thin-disk laser
    (2014) Wentsch, Katrin Sarah; Weichelt, Birgit; Günster, Stefan; Druon, Frederic; Georges, Patrick; Abdou Ahmed, Marwan; Graf, Thomas
    We present Ytterbium-doped CaF2 as a laser active material with good prospects for high-power operation in thin-disk laser configuration owing to its favorable thermal properties. Thanks to its broad emission bandwidth the material is also suitable for the generation of ultra-short pulses. The properties of the crystal as well as the challenges related to the coating, polishing, mounting and handling processes which are essential to achieve high power laser oscillation in thin-disk configuration are discussed. A wavelength tunability of 92 nm is demonstrated, which confirms the potential of Yb:CaF2 for the generation of ultra-short pulses. An output power of 250 W with an optical efficiency of ηopt = 47% was measured in CW multimode thin-disk laser operation with a pump spot diameter of 3.6 mm. Using a smaller pump spot diameter of 1 mm the fundamental mode output power was 13 W with an optical efficiency of ηopt = 34%.
  • Thumbnail Image
    ItemOpen Access
    Sapphire-based resonant waveguide-grating mirrors : advancing their intra-cavity power density capability
    (2023) Bashir, Danish; Boubekraoui, Ayoub; Mourkioti, Georgia; Li, Fangfang; Karvinen, Petri; Kuittinen, Markku; Mackenzie, Jacob. I.; Graf, Thomas; Abdou Ahmed, Marwan
    We report on the design, fabrication, and implementation of a single-layer resonant waveguide-grating (RWG) mirror on a sapphire substrate. Our goal is to enhance these optics capability to withstand high intra-cavity power densities by exploiting the superior thermal properties of sapphire. The RWG was implemented as an intra-cavity folding mirror in an Yb:YAG thin-disk laser to generate linearly polarized and spectrally stabilized radiation. A linearly polarized output power of 191 W with an optical efficiency of 39% was obtained in multi-mode operation. This corresponds to a power density of 52 kW/cm 2 on the RWG, for which the increase of its surface temperature was measured to be 12 K, which resulted in a 46-fold reduction of the surface temperature rise dependence on the intra-cavity power density with respect to what has been reported for a RWG on a fused silica substrate. In near fundamental-mode operation, a linearly polarized emission with an output power of 90 W, an optical efficiency of 30%, and a spectral bandwidth of 28 pm FWHM was obtained.
  • Thumbnail Image
    ItemOpen Access
    High-power, high-brightness solid-state laser architectures and their characteristics
    (2022) Brauch, Uwe; Röcker, Christoph; Graf, Thomas; Abdou Ahmed, Marwan
    The development of high-power diode lasers enabled new solid-state laser concepts such as thin-disk, fiber, and Innoslab lasers based on trivalent ytterbium as the laser-active ion, which resulted in a tremendous increase in the efficiency and beam quality of cw lasers compared to previously used lamp-pumped rod or slab lasers and the realization of ultrafast lasers with several 100 W or even kilowatts of average power. In addition to their beneficial thermo-optical properties, these architectures offer characteristic benefits making them especially suitable to obtain dedicated laser properties. This review article comprises milestone developments, characteristic challenges, and benefits, and summarizes the state of the art of high-power solid-state lasers with the focus on ultrafast lasers.
  • Thumbnail Image
    ItemOpen Access
    Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level
    (2018) Beirow, Frieder; Eckerle, Michael; Dannecker, Benjamin; Dietrich, Tom; Abdou Ahmed, Marwan; Graf, Thomas
    We report on a high-power passively mode-locked radially polarized Yb:YAG thin-disk oscillator providing 125 W of average output power. To the best of our knowledge, this is the highest average power ever reported from a mode-locked radially polarized oscillator without subsequent amplification stages. Mode-locking was achieved by implementing a SESAM as the cavity end mirror and the radial polarization of the LG*01 mode was obtained by means of a circular Grating Waveguide Output Coupler. The repetition rate was 78 MHz. A pulse duration of 0.97 ps and a spectral bandwidth of 1.4 nm (FWHM) were measured at the maximum output power. This corresponds to a pulse energy of 1.6 μJ and a pulse peak power of 1.45 MW. A high degree of radial polarization of 97.3 ± 1% and an M2-value of 2.16 which is close to the theoretical value for the LG*01 doughnut mode were measured.