07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8

Browse

Search Results

Now showing 1 - 10 of 34
  • Thumbnail Image
    ItemOpen Access
    A family of total Lagrangian Petrov-Galerkin Cosserat rod finite element formulations
    (2023) Eugster, Simon R.; Harsch, Jonas
    The standard in rod finite element formulations is the Bubnov-Galerkin projection method, where the test functions arise from a consistent variation of the ansatz functions. This approach becomes increasingly complex when highly nonlinear ansatz functions are chosen to approximate the rod's centerline and cross-section orientations. Using a Petrov-Galerkin projection method, we propose a whole family of rod finite element formulations where the nodal generalized virtual displacements and generalized velocities are interpolated instead of using the consistent variations and time derivatives of the ansatz functions. This approach leads to a significant simplification of the expressions in the discrete virtual work functionals. In addition, independent strategies can be chosen for interpolating the nodal centerline points and cross-section orientations. We discuss three objective interpolation strategies and give an in-depth analysis concerning locking and convergence behavior for the whole family of rod finite element formulations.
  • Thumbnail Image
    ItemOpen Access
    General mathematical model for the period chirp in interference lithography
    (2023) Bienert, Florian; Graf, Thomas; Abdou Ahmed, Marwan
  • Thumbnail Image
    ItemOpen Access
    Depth from axial differential perspective
    (2022) Faulhaber, Andreas; Krächan, Clara; Haist, Tobias
    We introduce an imaging-based passive on-axis technique for measuring the distance of individual objects in complex scenes. Two axially separated pupil positions acquire images (can be realized simultaneously or sequentially). Based on the difference in magnification for objects within the images, the distance to the objects can be inferred. The method avoids some of the disadvantages of passive triangulation sensors (e.g., correspondence, shadowing), is easy to implement and offers high lateral resolution. Due to the principle of operation it is especially suited for applications requiring only low to medium axial resolution. Theoretical findings, as well as follow-up experimental measurements, show obtainable resolutions in the range of few centimeters for distances of up to several meters.
  • Thumbnail Image
    ItemOpen Access
    Editorial - optical microscopic and spectroscopic techniques targeting biological applications
    (2021) Micó, Vicente; Pedrini, Giancarlo; Lei, Ming; Zuo, Chao; Gao, Peng
  • Thumbnail Image
    ItemOpen Access
    Physics-informed regression of implicitly-constrained robot dynamics
    (2022) Geist, Andreas René; Allgöwer, Frank (Prof. Dr.-Ing.)
    The ability to predict a robot’s motion through a dynamics model is critical for the development of fast, safe, and efficient control algorithms. Yet, obtaining an accurate robot dynamics model is challenging as robot dynamics are typically nonlinear and subject to environment-dependent physical phenomena such as friction and material elasticities. The respective functions often cause analytical dynamics models to have large prediction errors. An alternative approach to analytical modeling forms the identification of a robot’s dynamics through data-driven modeling techniques such as Gaussian processes or neural networks. However, solely data-driven algorithms require considerable amounts of data, which on a robotic system must be collected in real-time. Moreover, the information stored in the data as well as the coverage of the system’s state space by the data is limited by the controller that is used to obtain the data. To tackle the shortcomings of analytical dynamics and data-driven modeling, this dissertation investigates and develops models in which analytical dynamics is being combined with data-driven regression techniques. By combining prior structural knowledge from analytical dynamics with data-driven regression, physics-informed models show improved data-efficiency and prediction accuracy compared to using the aforementioned modeling techniques in an isolated manner.
  • Thumbnail Image
    ItemOpen Access
    Theoretical investigation on the elimination of the period chirp by deliberate substrate deformations
    (2022) Bienert, Florian; Graf, Thomas; Abdou Ahmed, Marwan
    We present a theoretical investigation on the approach of deliberately bending the substrate during the exposure within laser interference lithography to compensate for the period chirp. It is shown that the yet undiscovered function of the surface geometry, necessary to achieve the zero-chirp case (i.e. having a perfectly constant period over the whole substrate) is determined by a first-order differential equation. As the direct analytical solution of this differential equation is difficult, a numerical approach is developed, based on the optimization of pre-defined functions towards the unknown analytical solution of the differential equation by means of a Nelder-Mead simplex algorithm. By applying this method to a concrete example, we show that an off-center placement of the substrate with respect to the point sources is advantageous both in terms of achievable period and substrate curvature and that a fourth-order polynomial can greatly satisfy the differential equation leading to a root-mean-square deviation of only 1.4 pm with respect to the targeted period of 610 nm.
  • Thumbnail Image
    ItemOpen Access
    Improvement in systematic error in background-oriented schlieren results by using dynamic backgrounds
    (2021) Reichenzer, Frieder; Schneider, Mike; Herkommer, Alois
    The use of electronic visual displays for background-oriented schlieren allows for the quick change of the reference images. In this study, we show that the quality of synthetic and background-oriented schlieren images can be improved by acquiring a set of images with different reference images and generating a median displacement field from it. To explore potential benefits, we studied different background changing strategies and their effect on the quality of the evaluation of the displacement field via artificial and experimental image distortions.
  • Thumbnail Image
    ItemOpen Access
    3D printing of colored micro-optics
    (2023) Aslani, Valese; Toulouse, Andrea; Schmid, Michael; Giessen, Harald; Haist, Tobias; Herkommer, Alois
  • Thumbnail Image
    ItemOpen Access
    State observers for the time discretization of a class of impulsive mechanical systems
    (2022) Preiswerk, Pascal V.; Leine, Remco I.
    In this work, we investigate the state observer problem for linear mechanical systems with a single unilateral constraint, for which neither the impact time instants nor the contact distance is explicitly measured. We propose to attack the observer problem by transforming and approximating the original continuous‐time system by a discrete linear complementarity system (LCS) through the use of the Schatzman-Paoli scheme. From there, we derive a deadbeat observer in the form of a linear complementarity problem. Sufficient conditions guaranteeing the uniqueness of its solution then serve as observability conditions. In addition, the discrete adaptation of an existing passivity‐based observer design for LCSs can be applied. A key point in using a time discretization is that the discretization acts as a regularization, that is, the impacts take place over multiple time steps (here two time steps). This makes it possible to render the estimation error dynamics asymptotically stable. Furthermore, the so‐called peaking phenomenon appears as singularity within the time discretization approach, posing a challenge for robust observer design.