04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
Item Open Access Advanced impedance analysis for performance degradation during low-temperature CO2 electroreduction(2024) Chen, Qinhao; Kube, Alexander; Kopljar, Dennis; Friedrich, Kaspar AndreasElectrochemical impedance spectroscopy (EIS) is a powerful tool commonly used to study electrochemical systems. Nevertheless, its application in CO2 electroreduction has been so far limited due to its complex reaction mechanism and environment. Although initial findings have demonstrated the viability of applying EIS analysis in CO2 electrolyzers, the assignment of individual processes in the impedance spectra remains ambiguous. Therefore, a more detailed investigation, especially focused on its application in evaluating degradation mechanisms, is essential. In this study, a stable gas diffusion electrode (GDE) system was developed for a comprehensive EIS and distribution of relaxation time (DRT) evaluation to assess key degradation mechanisms under accelerated stress conditions such as high current density and low operating temperature. Validated by post-mortem analysis and complementary methods, we demonstrate the viability of this approach for operando monitoring of CO2 electroreduction by assigning individual mechanistic processes in the GDE and linking them to performance degradation over time.Item Open Access Application of ion chromatography for the reliable quantification of ammonium in electrochemical ammonia synthesis experiments : a practical guide(2023) Bragulla, Sebastian C. H.; Lorenz, Julian; Harms, Corinna; Wark, Michael; Friedrich, K. AndreasAssessing novel electrocatalysts for the electrochemical ammonia synthesis (EAS) requires reliable quantitative trace analysis of electrochemically produced ammonia to infer activity and selectivity. This study concerns the development of an ion chromatography (IC) method for quantitative trace analysis of ammonium in 0.1 M sulfuric acid electrolyte, which is applied to EAS gas-diffusion electrode (GDE) experiments with commercial chromium nitride as electrocatalyst. The developed IC method is highly sensitive, versatile, and reliable, achieving a limit of quantification (LOQ) of 6 μg l-1 (6 ppbmol) ammonium. The impacts of the sample matrix, dilution, and neutralization, as well as contamination, on the quantitative analysis by IC are analyzed. Experimental constraints result in an effective LOQ including dilution of 60 μg l-1 for the determination of ammonium in 0.1 M sulfuric acid electrolyte, owing to necessary sample dilution. The practical guide presented herein is intended to be very relevant for the field of EAS as a guideline and applicable to a broad range of catalyst systems and ion chromatography devices.Item Open Access Bridging granularity gaps to decarbonize large‐scale energy systems : the case of power system planning(2021) Cao, Karl‐Kiên; Haas, Jannik; Sperber, Evelyn; Sasanpour, Shima; Sarfarazi, Seyedfarzad; Pregger, Thomas; Alaya, Oussama; Lens, Hendrik; Drauz, Simon R.; Kneiske, Tanja M.The comprehensive evaluation of strategies for decarbonizing large‐scale energy systems requires insights from many different perspectives. In energy systems analysis, optimization models are widely used for this purpose. However, they are limited in incorporating all crucial aspects of such a complex system to be sustainably transformed. Hence, they differ in terms of their spatial, temporal, technological, and economic perspective and either have a narrow focus with high resolution or a broad scope with little detail. Against this background, we introduce the so‐called granularity gaps and discuss two possibilities to address them: increasing the resolutions of the established optimization models, and the different kinds of model coupling. After laying out open challenges, we propose a novel framework to design power systems in particular. Our exemplary concept exploits the capabilities of power system optimization, transmission network simulation, distribution grid planning, and agent‐based simulation. This integrated framework can serve to study the energy transition with greater comprehensibility and may be a blueprint for similar multimodel analyses.Item Open Access Effect of polytetrafluorethylene content in Fe‐N‐C‐based catalyst layers of gas diffusion electrodes for HT‐PEM fuel cell applications(2024) Zierdt, Tanja; Müller‐Hülstede, Julia; Schmies, Henrike; Schonvogel, Dana; Wagner, Peter; Friedrich, K. AndreasFe-N-C catalysts are a promising alternative to replace cost-intensive Pt-based catalysts in high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) electrodes. However, the electrode fabrication needs to be adapted for this new class of catalysts. In this study, gas diffusion electrodes (GDEs) are fabricated using a commercial Fe-N-C catalyst and different polytetrafluorethylene (PTFE) binder ratios, varying from 10 to 50 wt % in the catalyst layer (CL). The oxygen reduction reaction performance is investigated under HT-PEMFC conditions (160 °C, conc. H3PO4 electrolyte) in a half-cell setup. The acidophilic character of the Fe-N-C catalyst leads to intrusion of phosphoric acid electrolyte into the CL. The strength of the acid penetration depends on the PTFE content, which is visible via the contact angles. The 10 wt % PTFE GDE is less capable to withdraw product water and electrolyte and results into the lowest half-cell performance. Higher PTFE contents counterbalance the acid drag into the CL and impede flooding. The power density at around 130 mA mgCatalyst−2 increases by 34 % from 10 to 50 wt % PTFE.Item Open Access Elucidating the performance limitations of alkaline electrolyte membrane electrolysis : dominance of anion concentration in membrane electrode assembly(2020) Razmjooei, Fatemeh; Farooqui, Azharuddin; Reissner, Regine; Gago, Aldo Saul; Ansar, Syed Asif; Friedrich, Kaspar AndreasAnion exchange membrane water electrolyzers (AEMWEs) offer a cost‐effective technology for producing green hydrogen. Here, an AEMWE with atmospheric plasma spray non‐precious metal electrodes was tested in 0.1 to 1.0 M KOH solution, correlating performance with KOH concentration systematically. The highest cell performance was achieved at 1.0 M KOH (ca. 0.4 A cm-2 at 1.80 V), which was close to a traditional alkaline electrolysis cell with ≈6.0 M KOH. The cell exhibited 0.13 V improvement in the performance in 0.30 M KOH compared with 0.10 M KOH at 0.5 A cm−2. However, this improvement becomes more limited when further increasing the KOH concentration. Electrochemical impedance and numerical simulation results show that the ohmic resistance from the membrane was the most notable limiting factor to operate in low KOH concentration and the most sensitive to the changes in KOH concentration at 0.5 A cm-2. It is suggested that the effect of activation loss is more dominant at lower current densities; however, the ohmic loss is the most limiting factor at higher current densities, which is a current range of interest for industrial applications.Item Open Access Experimental analysis of the co-electrolysis operation under pressurized conditions with a 10 layer SOC stack(2020) Riedel, Marc; Heddrich, Marc P.; Friedrich, K. AndreasThis study examines the performance of a solid oxide cell (SOC) stack during co-electrolysis of CO2 and H2O at elevated pressures up to 8 bar. Steady-state and dynamically recorded U(i)-curves were performed in order to evaluate the performance over a wide temperature range and to quantify the area specific resistance (ASR) at different pressure levels. Furthermore, the outlet gas composition at various current densities was analyzed and compared with the thermodynamic equilibrium. The open circuit voltage (OCV) was found to increase with higher pressure due to well known thermodynamic relations. An increase of the limiting current density at elevated pressure was not observed for the investigated stack with electrolyte supported cells. The ASR of the stack was found to decrease slightly with higher pressure. It revealed an increase of the cell resistance with lower H/C ratios in the feed at lower temperatures, whereas the performance of the co-electrolysis was very similar to steam electrolysis for temperatures above 820 °C. Within an impedance study for steam, co- and CO2 electrolysis operation it was shown that pure CO2 electrolysis exhibits a higher pressure sensitivity compared to pure steam or co-electrolysis due to significantly increased activation and diffusion resistances.Item Open Access Exploring the interface of skin‐layered titanium fibers for electrochemical water splitting(2021) Liu, Chang; Shviro, Meital; Gago, Aldo S.; Zaccarine, Sarah F.; Bender, Guido; Gazdzicki, Pawel; Morawietz, Tobias; Biswas, Indro; Rasinski, Marcin; Everwand, Andreas; Schierholz, Roland; Pfeilsticker, Jason; Müller, Martin; Lopes, Pietro P.; Eichel, Rüdiger‐A.; Pivovar, Bryan; Pylypenko, Svitlana; Friedrich, K. Andreas; Lehnert, Werner; Carmo, MarceloWater electrolysis is the key to a decarbonized energy system, as it enables the conversion and storage of renewably generated intermittent electricity in the form of hydrogen. However, reliability challenges arising from titanium‐based porous transport layers (PTLs) have hitherto restricted the deployment of next‐generation water‐splitting devices. Here, it is shown for the first time how PTLs can be adapted so that their interface remains well protected and resistant to corrosion across ≈4000 h under real electrolysis conditions. It is also demonstrated that the malfunctioning of unprotected PTLs is a result triggered by additional fatal degradation mechanisms over the anodic catalyst layer beyond the impacts expected from iridium oxide stability. Now, superior durability and efficiency in water electrolyzers can be achieved over extended periods of operation with less‐expensive PTLs with proper protection, which can be explained by the detailed reconstruction of the interface between the different elements, materials, layers, and components presented in this work.Item Open Access High-resolution analysis of ionomer loss in catalytic layers after operation(2018) Morawietz, T.; Handl, M.; Oldani, C.; Gazdzicki, P.; Hunger, Jürgen; Wilhelm, Florian; Blake, John; Friedrich, K. Andreas; Hiesgen, R.The function of catalytic layers in fuel cells and electrolyzers depends on the properties of the ionically conductive phase, which are most commonly perfluorinated ionomers based on Nafion and Aquivion. An analysis by atomic force microscopy reveals that the ultrathin ionomer films around Pt/C agglomerates have a thickness distribution ranging from 3.5 nm to 20 nm. Their conductivity and gas permeation properties determine the fuel cell performance to a large extend. For electrodes in Aquivion-based membrane-electrode-assemblies operation-induced structure changes were investigated by means of material- and conductivity-sensitive atomic force microscopy, infrared spectroscopy and electron-dispersive X-ray analysis. The observed thinning of the ultrathin ionomer films was mainly caused by polymer degradation deduced from reduced swelling after long-time operation and a significant loss of ionomer with operation time detected by infrared spectroscopy. From the linear thickness increase of the ultrathin films with rising humidity, a mainly layered structure of the ionomer was deduced. An influence of thickness of such ultrathin ionomer films on fuel cell lifetime was found by analysis of differently prepared membrane-electrode-assemblies, where a linear increase of irreversible degradation rate with ionomer film thickness in the electrodes of unused membrane-electrode-assemblies was found.Item Open Access Hydrogen oxidation artifact during platinum oxide reduction in cyclic voltammetry analysis of low-loaded PEMFC electrodes(2020) Prass, Sebastian; St-Pierre, J.; Klingele, Matthias; Friedrich, K. Andreas; Zamel, NadaAn artifact appearing during the cathodic transient of cyclic voltammograms (CVs) of low-loaded platinum on carbon (Pt/C) electrodes in proton exchange membrane fuel cells (PEMFCs) was examined. The artifact appears as an oxidation peak overlapping the reduction peak associated to the reduction of platinum oxide (PtOx). By varying the nitrogen (N2) purge in the working electrode (WE), gas pressures in working and counter electrode, upper potential limits and scan rates of the CVs, the artifact magnitude and potential window could be manipulated. From the results, the artifact is assigned to crossover hydrogen (H2X) accumulating in the WE, once the electrode is passivated towards hydrogen oxidation reaction (HOR) due to PtOx coverage. During the cathodic CV transient, PtOx is reduced and HOR spontaneously occurs with the accumulated H2X, resulting in the overlap of the PtOx reduction with the oxidation peak. This feature is expected to occur predominantly in CV analysis of low-loaded electrodes made of catalyst material, whose oxide is inactive towards HOR. Further, it is only measurable while the N2 purge of the WE is switched off during the CV measurement. For higher loaded electrodes, the artifact is not observed as the electrocatalysts are not fully inactivated towards HOR due to incomplete oxide coverage, and/or the currents associated with the oxide reduction are much larger than the spontaneous HOR of accumulated H2X. However, owing to the forecasted reduction in noble metal loadings of catalyst in PEMFCs, this artifact is expected to be observed more often in the future.Item Open Access Identification of the underlying processes in impedance response of sulfur/carbon composite cathodes at different SOC(2022) Gerle, Martina; Wagner, Norbert; Häcker, Joachim; Nojabaee, Maryam; Friedrich, K. AndreasFor lithium-sulfur batteries, porous carbon/sulfur composite cathodes are the primary solution to compensate the non-conductive nature of sulfur. The composition and structure of this class of cathodes are crucial to the electrochemical performance, achieved energy density and the stability of the cell. Electrochemical impedance spectroscopy is employed to investigate and correlate the electrochemical performance of lithium-sulfur batteries to the composition and microstructure of differently fabricated carbon/sulfur composite cathodes. A transmission line model is applied to identify different underlying electrochemical processes appearing in the impedance response of a range of porous carbon/sulfur cathodes. The integration of a lithium ring serving as a counter electrode coupled with advanced wiring has allowed an artifact-free recording of the cathode impedance at different states of charge with the aim to investigate the evolution of impedance during discharge/charge and the kinetics of charge transfer depending on the infiltration method and the utilized carbon host. It is shown that impedance response of this class of cathodes is highly diverse and the plausible underlying processes are discussed in details. To this end, quasi-solid-state and various polysulfide-based charge transfer mechanisms are identified and their time constants are reported.Item Open Access In situ laboratory for plastic degradation in the Red Sea(2022) Brümmer, Franz; Schnepf, Uwe; Resch, Julia; Jemmali, Raouf; Abdi, Rahma; Kamel, Hesham Mostafa; Bonten, Christian; Müller, Ralph-WalterDegradation and fragmentation of plastics in the environment are still poorly understood. This is partly caused by the lack of long-term studies and methods that determine weathering duration. We here present a novel study object that preserves information on plastic age: microplastic (MP) resin pellets from the wreck of the SS Hamada, a ship that foundered twenty-nine years ago at the coast of Wadi el Gemal national park, Egypt. Its sinking date enabled us to precisely determine how long MP rested in the wreck and a nearby beach, on which part of the load was washed off. Pellets from both sampling sites were analyzed by microscopy, X-ray tomography, spectroscopy, calorimetry, gel permeation chromatography, and rheology. Most pellets were made of low-density polyethylene, but a minor proportion also consisted of high-density polyethylene. MP from inside the wreck showed no signs of degradation compared to pristine reference samples. Contrary, beached plastics exhibited changes on all structural levels, which sometimes caused fragmentation. These findings provide further evidence that plastic degradation under saltwater conditions is comparatively slow, whereas UV radiation and high temperatures on beaches are major drivers of that process. Future long-term studies should focus on underlying mechanisms and timescales of plastic degradation.Item Open Access Influence of cycling profile, depth of discharge and temperature on commercial LFP/C cell ageing : post-mortem material analysis of structure, morphology and chemical composition(2020) Simolka, Matthias; Heger, Jan-Frederik; Kaess, Hanno; Biswas, Indro; Friedrich, K. AndreasThe paper presents post-mortem analysis of commercial LiFePO4 battery cells, which are aged at 55 °C and - 20 °C using dynamic current profiles and different depth of discharges (DOD). Post-mortem analysis focuses on the structure of the electrodes using atomic force microscopy (AFM) and scanning electron microscopy (SEM) and the chemical composition changes using energy dispersive X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS). The results show that ageing at lower DOD results in higher capacity fading compared to higher DOD cycling. The anode surface aged at 55 °C forms a dense cover on the graphite flakes, while at the anode surface aged at - 20 °C lithium plating and LiF crystals are observed. As expected, Fe dissolution from the cathode and deposition on the anode are observed for the ageing performed at 55 °C, while Fe dissolution and deposition are not observed at - 20 °C. Using atomic force microscopy (AFM), the surface conductivity is examined, which shows only minor degradation for the cathodes aged at - 20 °C. The cathodes aged at 55 °C exhibit micrometer size agglomerates of nanometer particles on the cathode surface. The results indicate that cycling at higher SOC ranges is more detrimental and low temperature cycling mainly affects the anode by the formation of plated Li.Item Open Access Investigation of the degradation phenomena of a proton exchange membrane electrolyzer stack by successive replacement of aged components in single cells(2025) Kimmel, Benjamin; Morawietz, Tobias; Biswas, Indro; Sata, Noriko; Gazdzicki, Pawel; Gago, Aldo Saul; Friedrich, Kaspar AndreasDue to their compactness and high flexibility to operate under dynamic conditions, proton exchange membrane water electrolyzers (PEMWEs) are ideal systems for the production of green hydrogen from renewable energy sources. For the widespread implementation of PEMWEs, an understanding of their degradation mechanism is crucial. In this work, we analyze a commercial PEMWE stack via a novel approach of breaking down from the stack to the single-cell level. Therefore, the disassembled stack components are cut to fit into single cells. Then, the aged components are successively replaced with pristine or regenerated components (cleaned and polished), and electrochemical characterizations are conducted to investigate the contributions of the individual components on performance losses. In addition, several underlying degradation phenomena are identified using different physical ex-situ analysis methods. The catalyst-coated membrane (CCM) contributes the most to performance degradation because of contamination and ionomer rearrangement. Additionally, traces of calcium, likely due to insufficient water purification used during operation or for cleaning the cell components, were found. Significant oxidation was observed on the anodic components, while the electronic conductivity on the cathode side remained unchanged. The combination of electrochemical characterization with stepwise regeneration processes and physical ex-situ analysis allows to draw conclusions about the impact of different components on degradation and to analyze the underlying aging mechanisms occurring in each component.Item Open Access Meteorological and air quality measurements in a city region with complex terrain : influence of meteorological phenomena on urban climate(2023) Samad, Abdul; Kiseleva, Olga; Holst, Christopher Claus; Wegener, Robert; Kossmann, Meinolf; Meusel, Gregor; Fiehn, Alina; Erbertseder, Thilo; Becker, Ralf; Roiger, Anke; Stanislawsky, Peter; Klemp, Dieter; Emeis, Stefan; Kalthoff, Norbert; Vogt, UlrichItem Open Access A new approach to modeling solid oxide cell reactors with multiple stacks for process system simulation(2022) Tomberg, M.; Heddrich, M. P.; Sedeqi, F.; Ullmer, D.; Ansar, S. A.; Friedrich, K. AndreasReactors with solid oxide cells (SOC) are highly efficient electrochemical energy converters, which can be used for electricity generation and production of chemical feedstocks. The technology is in an upscaling phase. Thereby demanding development of strategies for robust and efficient operation or large SOC reactors and plants. The present state of technology requires reactors with multiple stacks to achieve the appropriate power. This study aims to establish and apply a simulation framework to investigate process systems containing SOC reactors with multiple stacks. Focusing especially on the operating behavior of SOC reactors under transient conditions, by observing the performance of all cells in the reactor. For this purpose, a simulation model of the entire SOC reactor consisting of multiple stacks, pipes, manifolds, and thermal insulation was developed. After validation on stack and reactor level, the model was used to investigate the fundamental behavior of the SOC reactors and the individual stacks in various operation modes. Additionally, the influences of local degradation and reactor scaling on the performance were examined. The results show that detailed investigation of the reactors is necessary to ensure operability and to increase efficiency and robustness. Furthermore, the computing performance is sufficient to develop and validate system controls.Item Open Access Novel pyrrolidinium-functionalized styrene-b-ethylene-b-butylene-b-styrene copolymer based anion exchange membrane with flexible spacers for water electrolysis(2023) Xu, Ziqi; Delgado, Sofia; Atanasov, Vladimir; Morawietz, Tobias; Gago, Aldo Saul; Friedrich, K. AndreasAnion exchange membranes (AEM) are core components for alkaline electrochemical energy technologies, such as water electrolysis and fuel cells. They are regarded as promising alternatives for proton exchange membranes (PEM) due to the possibility of using platinum group metal (PGM)-free electrocatalysts. However, their chemical stability and conductivity are still of great concern, which is appearing to be a major challenge for developing AEM-based energy systems. Herein, we highlight an AEM with styrene-b-ethylene-b-butylene-b-styrene copolymer (SEBS) as a backbone and pyrrolidinium or piperidinium functional groups tethered on flexible ethylene oxide spacer side-chains (SEBS-Py2O6). This membrane reached 27.8 mS cm-1 hydroxide ion conductivity at room temperature, which is higher compared to previously obtained piperidinium-functionalized SEBS reaching up to 10.09 mS cm-1. The SEBS-Py206 combined with PGM-free electrodes in an AWE water electrolysis (AEMWE) cell achieves 520 mA cm-2 at 2 V in 0.1 M KOH and 171 mA cm-2 in ultra-pure water (UPW). This high performance indicates that SEBS-Py2O6 membranes are suitable for application in water electrolysis.Item Open Access PEM single cells under differential conditions : full factorial parameterization of the ORR and HOR kinetics and loss analysis(2022) Gerling, Christophe; Hanauer, Matthias; Berner, Ulrich; Friedrich, K. AndreasThe anode and cathode kinetics are parameterized based on differential cell measurements. Systematic parameter variations are evaluated to disentangle the dependencies of the electrochemical impedance spectroscopy (EIS) signatures in H2/H2 mode. We introduce a new CO recovery protocol for both electrodes that enables to accurately characterize the hydrogen oxidation reaction (HOR) kinetics. Then, we demonstrate that a compact Tafel kinetics law captures the oxygen reduction reaction (ORR) kinetics for a full factorial grid of conditions, covering a wide range of relative humidities (rH), temperatures, oxygen partial pressures and current densities. This yields the characteristic activation energy and effective reaction order, and we reconcile models that make different assumptions regarding the rH dependency. Moreover, we analyze O2 transport contributions by steady-state and transient limiting current techniques and heliox measurements. Although the rising uncertainty of loss corrections at high current densities makes it impossible to unambiguously identify an intrinsic potential-dependent change of the Tafel slope, our data support that such effect needs not be considered for steady-state cathodic half-cell potentials above 0.8 V.Item Open Access Racing for green hydrogen economics with polymer electrolyte water electrolysis : how to be achieved(2024) Stiber, Svenja; Gago, Aldo; Friedrich, K. AndreasFor renewable hydrogen production, polymer electrolyte membrane water electrolysis is the most promising technology. However, the technology is not yet competitive with conventional hydrogen production in terms of cost. The impact of cost reduction options on CAPEX and OPEX is investigated. Depending on the hours of operation, the main cost factor is the production and manufacturing of components or the price of electricity. Clearly a tremendous need to implement low‐cost electrolysis cells on a large scale to bring green hydrogen production costs to a level 1-3 € kg-1 hydrogen.Item Open Access Regionale Energie- und Umweltanalyse für die Region Hochrhein-Bodensee : Kurzfassung(Waldshut-Tiengen : Regionalverband Hochrhein-Bodensee, 1989) Müller, Thomas; Boysen, Barbara; Fahl, Ulrich; Friedrich, Rainer; Kaltschmitt, Martin; Kuntze, Richard; Voß, Alfred; Giesecke, Jürgen; Jorde, Klaus; Voigt, C.In dem Gutachten wird auf der Grundlage der Erfassung des Energieverbrauchs und der Emissionen in der Region Hochrhein-Bodensee im Jahre 1986 ein Referenzszenario aufgebaut, in dem Annahmen über die Entwicklung des Energieverbrauchs und der Emissionen bis zum Jahre 2000 berechnet werden. Das Gutachten untersucht die Ausschöpfung weiterer Möglichkeiten der Energieeinsparung und die Nutzung weiterer Möglichkeiten zur Emissionsminderung in der Region. Eine umfangreiche und eingehende Untersuchung ist den Möglichkeiten der Verwendung regenerativer Energiequellen in der Region gewidmet. Insbesondere wird auch ein verstärkter Ausbau der Kraft-Wärme-Kopplung untersucht. Die wichtigsten Ergebnisse der Analyse liegen auch auf Gemeindebasis vor, so daß den Gemeinden in der Region wertvolle Handlungshinweise für ihre zukünftige Energiepolitik angeboten werden können. Der Regionalverband wird die Regionale Energie- und Umweltanalyse- in vollem Umfang veröffentlichen. Er schickt in dem vorliegenden Heft eine Zusammenfassung voraus, um erste Ergebnisse möglichst rasch zu veröffentlichen.Item Open Access Scalable fabrication of multi-layered Cu-based electrodes via solvent-free method for the selective electrochemical conversion of CO2 to C2+ products(2024) Chen, Qinhao; Kube, Alexander; Rana, Bhawna; Biswas, Indro; Morawietz, Tobias; Kopljar, Dennis; Friedrich, Kaspar AndreasIn the research field of CO2 electroreduction, gas diffusion electrodes (GDEs) are predominantly manufactured through solvent-based processes. Meanwhile, the solvent-free method has gained heightened attention due to its potential to reduce operational and production expenses, while considering ecological aspects such as solvent evaporation, circulation, and waste treatment. Drawing from its successful applications in other fields, we have specifically developed a solvent-free manufacturing method to produce multi-layered Cu-based GDEs for CO2 electroreduction. The procedure is compatible with industrial production lines, specifically through a roll-to-roll process. By evaluating the interplay between production parameters and electrochemical performance of GDEs via various characterization methods, key factors, i.e., hydrophobicity, gas permeability, thickness, and pore size, were adjusted and applied to achieve a highly selective GDE towards C2+ products (alcohols and ethylene) at industrial relevant currents up to 300 mA cm-2 (ethylene ∼40%, ethanol ∼10%, n-propanol ∼15%).