04 Fakultät Energie-, Verfahrens- und Biotechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    ItemOpen Access
    Hydrolyzable microplastics in soil : low biodegradation but formation of a specific microbial habitat?
    (2022) Schöpfer, Lion; Schnepf, Uwe; Marhan, Sven; Brümmer, Franz; Kandeler, Ellen; Pagel, Holger
    Microplastics (MP, plastic particles between 0.1 and 5000 μm) contaminate agricultural soils through the application of organic fertilizers, sewage sludge, and plastic mulch. MP surfaces and the MP-soil interface provide specific habitats for soil microorganisms - the plastisphere. Microorganisms in the plastisphere may benefit from utilizing MP as a carbon (C) source. Hydrolyzable MP with ester bonds are susceptible to enzymatic depolymerization by hydrolysis. In a microcosm experiment, we investigated MP biodegradation of small and large (< 0.5 mm and 0.5-2 mm respectively), hydrolyzable (a poly(lactic acid)/poly(butylene co-adipate terephthalate) blend, PLA/PBAT) and non-hydrolyzable (low-density polyethylene, LDPE) polymers, and the effects of these MP on microorganisms in dry and wet MP-amended soil. MP affected neither abundance and composition of the main soil microbial groups (fungi, Gram-negative, and Gram-positive bacteria), specific activities of ß-glucosidase, ß-xylosidase, lipase, and phenoloxidase, nor respiration in MP-amended soil. Only large PLA/PBAT particles in dry soil were significantly mineralized (15.4% of initial PLA/PBAT-C after 230 days). PLA/PBAT mineralization coincided with enhanced lipase and ß-glucosidase activities on the surfaces of individual PLA/PBAT particles extracted from the soil after incubation (compared to LDPE and non-incubated PLA/PBAT particles). We detected cracks on the surfaces of PLA/PBAT particles using scanning electron microscopy, indicating initiation of MP biodegradation, presumably due to depolymerization by lipases. Results suggest that the PLA/PBAT plastisphere is a polymer-specific habitat for lipase-producing soil microorganisms. Our study demonstrates that analyzing biogeochemical interactions within polymer-specific plastispheres is essential to assess MP fate and their impacts on microbially driven soil processes.
  • Thumbnail Image
    ItemOpen Access
    Cultivation-independent analysis of the bacterial community associated with the calcareous sponge Clathrina clathrus and isolation of Poriferisphaera corsica Gen. Nov., Sp. Nov., belonging to the barely studied class Phycisphaerae in the phylum Planctomycetes
    (2020) Kallscheuer, Nicolai; Wiegand, Sandra; Kohn, Timo; Boedeker, Christian; Jeske, Olga; Rast, Patrick; Müller, Ralph-Walter; Brümmer, Franz; Heuer, Anja; Jetten, Mike S. M.; Rohde, Manfred; Jogler, Mareike; Jogler, Christian
    Marine ecosystems serve as global carbon sinks and nutrient source or breeding ground for aquatic animals. Sponges are ancient parts of these important ecosystems and can be found in caves, the deep-sea, clear waters, or more turbid environments. Here, we studied the bacterial community composition of the calcareous sponge Clathrina clathrus sampled close to the island Corsica in the Mediterranean Sea with an emphasis on planctomycetes. We show that the phylum Planctomycetes accounts for 9% of the C. clathrus-associated bacterial community, a 5-fold enrichment compared to the surrounding seawater. Indeed, the use of C. clathrus as a yet untapped source of novel planctomycetal strains led to the isolation of strain KS4T. The strain represents a novel genus and species within the class Phycisphaerae in the phylum Planctomycetes and displays interesting cell biological features, such as formation of outer membrane vesicles and an unexpected mode of cell division.
  • Thumbnail Image
    ItemOpen Access
    Microplastics persist in an arable soil but do not affect soil microbial biomass, enzyme activities, and crop yield
    (2022) Schöpfer, Lion; Möller, Julia N.; Steiner, Thomas; Schnepf, Uwe; Marhan, Sven; Resch, Julia; Bayha, Ansilla; Löder, Martin G. J.; Freitag, Ruth; Brümmer, Franz; Laforsch, Christian; Streck, Thilo; Forberger, Jens; Kranert, Martin; Kandeler, Ellen; Pagel, Holger
    Microplastics (MP, plastic particles <5 mm) are ubiquitous in arable soils due to significant inputs via organic fertilizers, sewage sludges, and plastic mulches. However, knowledge of typical MP loadings, their fate, and ecological impacts on arable soils is limited. We studied (1) MP background concentrations, (2) the fate of added conventional and biodegradable MP, and (3) effects of MP in combination with organic fertilizers on microbial abundance and activity associated with carbon (C) cycling, and crop yields in an arable soil. On a conventionally managed soil (Luvisol, silt loam), we arranged plots in a randomized complete block design with the following MP treatments (none, low‐density polyethylene [LDPE], a blend of poly(lactic acid) and poly(butylene adipate‐co‐terephthalate) [PLA/PBAT]) and organic fertilizers (none, compost, digestate). We added 20 kg MP ha-1 and 10 t organic fertilizers ha-1. We measured concentrations of MP in the soil, microbiological indicators of C cycling (microbial biomass and enzyme activities), and crop yields over 1.5 years. Background concentration of MP in the top 10 cm was 296 ± 110 (mean ± standard error) particles <0.5 mm per kg soil, with polypropylene, polystyrene, and polyethylene as the main polymers. Added LDPE and PLA/PBAT particles showed no changes in number and particle size over time. MP did not affect the soil microbiological indicators of C cycling or crop yields. Numerous MP occur in arable soils, suggesting diffuse MP entry into soils. In addition to conventional MP, biodegradable MP may persist under field conditions. However, MP at current concentrations are not expected to affect C turnover and crop yield.
  • Thumbnail Image
    ItemOpen Access
    Reduced ageing in the frozen state in the tardigrade Milnesium inceptum (Eutardigrada: Apochela)
    (2022) Sieger, Jessica; Brümmer, Franz; Ahn, Hyunsoo; Lee, Seung Geol; Kim, Sanguk; Schill, Ralph O.
    Tardigrades can survive harsh environmental conditions, such as drought and low temperature. To withstand freezing, they enter cryobiosis, a state of biological organization in which metabolic activity slows down or comes reversibly to a standstill. Thus, cryobiosis resembles anhydrobiosis, where tardigrades (and a few other invertebrate groups) undergo extreme desiccation and appear not to age in the dry state. The lack of ageing in the anhydrobiotic state, the so‐called ‘Sleeping Beauty’ hypothesis, is assumed also to pertain to cryobiosis, but this has not been investigated. To test this, a group of tardigrades was subjected to sub‐zero temperature treatment by alternating weekly periods of freezing at -30°C and feeding at 20°C. The temporarily frozen tardigrades lived twice as long as the control group, but both control and temporarily frozen groups had similar lifespans if the time spent frozen was excluded. This represents the first demonstration that the ‘Sleeping Beauty’ hypothesis applies to cryobiosis, meaning that tardigrades do not age while frozen.
  • Thumbnail Image
    ItemOpen Access
    Genesis of amorphous calcium carbonate containing alveolar plates in the ciliate Coleps hirtus (Ciliophora, Prostomatea)
    (2013) Lemloh, Marie-Louise; Marin, Frédéric; Herbst, Frédéric; Plasseraud, Laurent; Schweikert, Michael; Baier, Johannes; Bill, Joachim; Brümmer, Franz
  • Thumbnail Image
    ItemOpen Access
    In situ laboratory for plastic degradation in the Red Sea
    (2022) Brümmer, Franz; Schnepf, Uwe; Resch, Julia; Jemmali, Raouf; Abdi, Rahma; Kamel, Hesham Mostafa; Bonten, Christian; Müller, Ralph-Walter
    Degradation and fragmentation of plastics in the environment are still poorly understood. This is partly caused by the lack of long-term studies and methods that determine weathering duration. We here present a novel study object that preserves information on plastic age: microplastic (MP) resin pellets from the wreck of the SS Hamada, a ship that foundered twenty-nine years ago at the coast of Wadi el Gemal national park, Egypt. Its sinking date enabled us to precisely determine how long MP rested in the wreck and a nearby beach, on which part of the load was washed off. Pellets from both sampling sites were analyzed by microscopy, X-ray tomography, spectroscopy, calorimetry, gel permeation chromatography, and rheology. Most pellets were made of low-density polyethylene, but a minor proportion also consisted of high-density polyethylene. MP from inside the wreck showed no signs of degradation compared to pristine reference samples. Contrary, beached plastics exhibited changes on all structural levels, which sometimes caused fragmentation. These findings provide further evidence that plastic degradation under saltwater conditions is comparatively slow, whereas UV radiation and high temperatures on beaches are major drivers of that process. Future long-term studies should focus on underlying mechanisms and timescales of plastic degradation.