04 Fakultät Energie-, Verfahrens- und Biotechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5

Browse

Search Results

Now showing 1 - 10 of 39
  • Thumbnail Image
    ItemOpen Access
    Precision 3D‐printed cell scaffolds mimicking native tissue composition and mechanics
    (2020) Erben, Amelie; Hörning, Marcel; Hartmann, Bastian; Becke, Tanja; Eisler, Stephan A.; Southan, Alexander; Cranz, Séverine; Hayden, Oliver; Kneidinger, Nikolaus; Königshoff, Melanie; Lindner, Michael; Tovar, Günter E. M.; Burgstaller, Gerald; Clausen‐Schaumann, Hauke; Sudhop, Stefanie; Heymann, Michael
    Cellular dynamics are modeled by the 3D architecture and mechanics of the extracellular matrix (ECM) and vice versa. These bidirectional cell‐ECM interactions are the basis for all vital tissues, many of which have been investigated in 2D environments over the last decades. Experimental approaches to mimic in vivo cell niches in 3D with the highest biological conformity and resolution can enable new insights into these cell‐ECM interactions including proliferation, differentiation, migration, and invasion assays. Here, two‐photon stereolithography is adopted to print up to mm‐sized high‐precision 3D cell scaffolds at micrometer resolution with defined mechanical properties from protein‐based resins, such as bovine serum albumin or gelatin methacryloyl. By modifying the manufacturing process including two‐pass printing or post‐print crosslinking, high precision scaffolds with varying Young's moduli ranging from 7‐300 kPa are printed and quantified through atomic force microscopy. The impact of varying scaffold topographies on the dynamics of colonizing cells is observed using mouse myoblast cells and a 3D‐lung microtissue replica colonized with primary human lung fibroblast. This approach will allow for a systematic investigation of single‐cell and tissue dynamics in response to defined mechanical and bio‐molecular cues and is ultimately scalable to full organs.
  • Thumbnail Image
    ItemOpen Access
    Identifying and engineering bottlenecks of autotrophic isobutanol formation in recombinant C. ljungdahlii by systemic analysis
    (2021) Hermann, Maria; Teleki, Attila; Weitz, Sandra; Niess, Alexander; Freund, Andreas; Bengelsdorf, Frank Robert; Dürre, Peter; Takors, Ralf
    Clostridium ljungdahlii (C. ljungdahlii, CLJU) is natively endowed producing acetic acid, 2,3-butandiol, and ethanol consuming gas mixtures of CO2, CO, and H2 (syngas). Here, we present the syngas-based isobutanol formation using C. ljungdahlii harboring the recombinant amplification of the “Ehrlich” pathway that converts intracellular KIV to isobutanol. Autotrophic isobutanol production was studied analyzing two different strains in 3-L gassed and stirred bioreactors. Physiological characterization was thoroughly applied together with metabolic profiling and flux balance analysis. Thereof, KIV and pyruvate supply were identified as key “bottlenecking” precursors limiting preliminary isobutanol formation in CLJU[KAIA] to 0.02 g L-1. Additional blocking of valine synthesis in CLJU[KAIA]:ilvE increased isobutanol production by factor 6.5 finally reaching 0.13 g L-1. Future metabolic engineering should focus on debottlenecking NADPH availability, whereas NADH supply is already equilibrated in the current generation of strains.
  • Thumbnail Image
    ItemOpen Access
    Application of ion chromatography for the reliable quantification of ammonium in electrochemical ammonia synthesis experiments : a practical guide
    (2023) Bragulla, Sebastian C. H.; Lorenz, Julian; Harms, Corinna; Wark, Michael; Friedrich, K. Andreas
    Assessing novel electrocatalysts for the electrochemical ammonia synthesis (EAS) requires reliable quantitative trace analysis of electrochemically produced ammonia to infer activity and selectivity. This study concerns the development of an ion chromatography (IC) method for quantitative trace analysis of ammonium in 0.1 M sulfuric acid electrolyte, which is applied to EAS gas-diffusion electrode (GDE) experiments with commercial chromium nitride as electrocatalyst. The developed IC method is highly sensitive, versatile, and reliable, achieving a limit of quantification (LOQ) of 6 μg l-1 (6 ppbmol) ammonium. The impacts of the sample matrix, dilution, and neutralization, as well as contamination, on the quantitative analysis by IC are analyzed. Experimental constraints result in an effective LOQ including dilution of 60 μg l-1 for the determination of ammonium in 0.1 M sulfuric acid electrolyte, owing to necessary sample dilution. The practical guide presented herein is intended to be very relevant for the field of EAS as a guideline and applicable to a broad range of catalyst systems and ion chromatography devices.
  • Thumbnail Image
    ItemOpen Access
    Thin organic‐inorganic anti‐fouling hybrid‐films for microreactor components
    (2022) Neßlinger, Vanessa; Welzel, Stefan; Rieker, Florian; Meinderink, Dennis; Nieken, Ulrich; Grundmeier, Guido
    Deposit formation and fouling in reactors for polymer production and processing especially in microreactors is a well‐known phenomenon. Despite the flow and pressure loss optimized static mixers, fouling occurs on the surfaces of the mixer elements. To improve the performance of such parts even further, stainless steel substrates are coated with ultra‐thin films which have low surface energy, good adhesion, and high durability. Perfluorinated organosilane (FOTS) films deposited via chemical vapor deposition (CVD) are compared with FOTS containing zirconium oxide sol‐gel films regarding the prevention of deposit formation and fouling during polymerization processes in microreactors. Both film structures led to anti‐adhesive properties of microreactor component surfaces during aqueous poly(vinylpyrrolidone) (PVP) synthesis. To determine the morphology and surface chemistry of the coatings, different characterization methods such as X‐ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy as well as microscopic methods such as field‐emission scanning electron microscopy (FE‐SEM) and atomic force microscopy (AFM) are applied. The surface free energy and wetting properties are analyzed by means of contact angle measurements. The application of thin film‐coated mixing elements in a microreactor demonstrates a significant lowering in pressure increase caused by a reduced deposit formation.
  • Thumbnail Image
    ItemOpen Access
    S‐adenosylmethionine and methylthioadenosine boost cellular productivities of antibody forming Chinese hamster ovary cells
    (2020) Verhagen, Natascha; Teleki, Attila; Heinrich, Christoph; Schilling, Martin; Unsöld, Andreas; Takors, Ralf
    The improvement of cell specific productivities for the formation of therapeutic proteins is an important step towards intensified production processes. Among others, the induction of the desired production phenotype via proper media additives is a feasible solution provided that said compounds adequately trigger metabolic and regulatory programs inside the cells. In this study, S‐(5′‐adenosyl)-l‐methionine (SAM) and 5′‐deoxy‐5′‐(methylthio)adenosine (MTA) were found to stimulate cell specific productivities up to approx. 50% while keeping viable cell densities transiently high and partially arresting the cell cycle in an anti‐IL‐8‐producing CHO‐DP12 cell line. Noteworthy, MTA turned out to be the chemical degradation product of the methyl group donor SAM and is consumed by the cells.
  • Thumbnail Image
    ItemOpen Access
    Coumarin-4-ylmethyl- and p-hydroxyphenacyl-based photoacid generators with high solubility in aqueous media: synthesis, stability and photolysis
    (2020) Adatia, Karishma K.; Halbritter, Thomas; Reinfelds, Matiss; Michele, Andre; Tran, Michael; Laschat, Sabine; Heckel, Alexander; Tovar, Günter E. M.; Southan, Alexander
    (Coumarin‐4‐yl)methyl (c4m) and p‐hydroxyphenacyl (pHP)‐based compounds are well known for their highly efficient photoreactions, but often show limited solubility in aqueous media. To circumvent this, we synthesized and characterized the two new c4m and pHP‐based photoacid generators (PAGs), 7‐[bis(carboxymethyl)amino]‐4‐(acetoxymethyl)coumarin (c4m‐ac) and p‐hydroxyphenacyl‐2,5,8,11‐tetraoxatridecan‐13‐oate (pHP‐t), and determined their solubilities, stabilities and photolysis in aqueous media. The two compounds showed high solubilities in water of 2.77 mmol L−1±0.07 mmol L−1 (c4m‐ac) and 124.66 mmol L−1±2.1 mmol L−1 (pHP‐t). In basic conditions at pH 9, solubility increased for c4m‐ac to 646.46 mmol L−1±0.63 mmol L−1, for pHP‐t it decreased to 34.68 mmol L−1±0.62 mmol L−1. Photochemical properties of the two PAGs, such as the absorption maxima, the maximum molar absorption coefficients and the quantum yields, were found to be strongly pH‐dependent. Both PAGs showed high stabilities s24h ≥95 % in water for 24 h, but decreasing stability with increasing pH value due to hydrolysis. The present study contributes to a clearer insight into the synthesis, solubilities, stabilities, and photolysis of c4m and pHP‐based PAGs for further photochemical applications when high PAG concentrations are required, such as in polymeric foaming.
  • Thumbnail Image
    ItemOpen Access
    Electron availability in CO2, CO and H2 mixtures constrains flux distribution, energy management and product formation in Clostridium ljungdahlii
    (2020) Hermann, Maria; Teleki, Attila; Weitz, Sandra; Niess, Alexander; Freund, Andreas; Bengelsdorf, Frank R.; Takors, Ralf
    Acetogens such as Clostridium ljungdahlii can play a crucial role reducing the human CO2 footprint by converting industrial emissions containing CO2, CO and H2 into valuable products such as organic acids or alcohols. The quantitative understanding of cellular metabolism is a prerequisite to exploit the bacterial endowments and to fine-tune the cells by applying metabolic engineering tools. Studying the three gas mixtures CO2 + H2, CO and CO + CO2 + H2 (syngas) by continuously gassed batch cultivation experiments and applying flux balance analysis, we identified CO as the preferred carbon and electron source for growth and producing alcohols. However, the total yield of moles of carbon (mol-C) per electrons consumed was almost identical in all setups which underlines electron availability as the main factor influencing product formation. The Wood–Ljungdahl pathway (WLP) showed high flexibility by serving as the key NAD+ provider for CO2 + H2, whereas this function was strongly compensated by the transhydrogenase-like Nfn complex when CO was metabolized. Availability of reduced ferredoxin (Fdred) can be considered as a key determinant of metabolic control. Oxidation of CO via carbon monoxide dehydrogenase (CODH) is the main route of Fdred formation when CO is used as substrate, whereas Fdred is mainly regenerated via the methyl branch of WLP and the Nfn complex utilizing CO2 + H2. Consequently, doubled growth rates, highest ATP formation rates and highest amounts of reduced products (ethanol, 2,3-butanediol) were observed when CO was the sole carbon and electron source.
  • Thumbnail Image
    ItemOpen Access
    Eclectic characterisation of chemically modified cell-derived matrices obtained by metabolic glycoengineering and re-assessment of commonly used methods
    (2020) Keller, Silke; Liedek, Anke; Shendi, Dalia; Bach, Monika; Tovar, Günter E. M.; Kluger, Petra J.; Southan, Alexander
    Azide-bearing cell-derived extracellular matrices (“clickECMs”) have emerged as a highly exciting new class of biomaterials. They conserve substantial characteristics of the natural extracellular matrix (ECM) and offer simultaneously small abiotic functional groups that enable bioorthogonal bioconjugation reactions. Despite their attractiveness, investigation of their biomolecular composition is very challenging due to the insoluble and highly complex nature of cell-derived matrices (CDMs). Yet, thorough qualitative and quantitative analysis of the overall material composition, organisation, localisation, and distribution of typical ECM-specific biomolecules is essential for consistent advancement of CDMs and the understanding of the prospective functions of the developed biomaterial. In this study, we evaluated frequently used methods for the analysis of complex CDMs. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and (immune)histochemical staining methods in combination with several microscopic techniques were found to be highly eligible. Commercially available colorimetric protein assays turned out to deliver inaccurate information on CDMs. In contrast, we determined the nitrogen content of CDMs by elementary analysis and converted it into total protein content using conversion factors which were calculated from matching amino acid compositions. The amount of insoluble collagens was assessed based on the hydroxyproline content. The Sircol™ assay was identified as a suitable method to quantify soluble collagens while the Blyscan™ assay was found to be well-suited for the quantification of sulphated glycosaminoglycans (sGAGs). Eventually, we propose a series of suitable methods to reliably characterise the biomolecular composition of fibroblast-derived clickECM.
  • Thumbnail Image
    ItemOpen Access
    Proton-conducting membranes for the artificial leaf
    (2023) Bosson, Karell; Tovar, Günter E. M. (Prof.)
    With the aim of producing proton conducting membranes with improved proton conductivity and mechanical properties, the poly(pentafluorostyrene)-b-(butyl acrylate) (PPFS-b-PBuA) system was investigated. The study mainly focuses on the influence of the forming polymer nanostructures on the conductivity properties of the membranes. A series of well-defined PPFS-b-PBuA block copolymers (BCPs) were synthesized via nitroxide-mediated controlled radical polymerization (NMP). Spontaneous self-assembly of the BCP element was induced via a targeted change in polymer composition. Moreover, by adjusting the molar composition via enrichment of one of the blocks after synthesis, controlled self-assembly of the BCPs was realized. This was done by combining the corresponding homopolymer with the block copolymer to form a polymer blend - one of the blocks mixed to the BCP. Forming such polymer blends expanded the range of available techniques for tailoring the morphology for desired applications. Sulfonation of BCPs for the preparation of proton-conducting membranes was carried out by a para-fluoro thiol "click" reaction using sodium 3-mercapto-1-propanesulfonate (SMPS). The accessibility of fluorine in the para position of the phenylene group of PPFS provides countless opportunities for polymer functionalization by nucleophilic substitution. After modification of BCP, the self-assembly ability was retained, and higher conductivities were obtained compared to random copolymers. In addition, complementary studies were conducted on the use of printing techniques for membrane upscaling and evaluation of their life cycle.
  • Thumbnail Image
    ItemOpen Access
    PEM single cells under differential conditions : full factorial parameterization of the ORR and HOR kinetics and loss analysis
    (2022) Gerling, Christophe; Hanauer, Matthias; Berner, Ulrich; Friedrich, K. Andreas
    The anode and cathode kinetics are parameterized based on differential cell measurements. Systematic parameter variations are evaluated to disentangle the dependencies of the electrochemical impedance spectroscopy (EIS) signatures in H2/H2 mode. We introduce a new CO recovery protocol for both electrodes that enables to accurately characterize the hydrogen oxidation reaction (HOR) kinetics. Then, we demonstrate that a compact Tafel kinetics law captures the oxygen reduction reaction (ORR) kinetics for a full factorial grid of conditions, covering a wide range of relative humidities (rH), temperatures, oxygen partial pressures and current densities. This yields the characteristic activation energy and effective reaction order, and we reconcile models that make different assumptions regarding the rH dependency. Moreover, we analyze O2 transport contributions by steady-state and transient limiting current techniques and heliox measurements. Although the rising uncertainty of loss corrections at high current densities makes it impossible to unambiguously identify an intrinsic potential-dependent change of the Tafel slope, our data support that such effect needs not be considered for steady-state cathodic half-cell potentials above 0.8 V.