04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
17 results
Search Results
Item Open Access Increasing low-temperature toughness of 09Mn2Si steel through lamellar structuring by helical rolling(2021) Panin, Sergey; Vlasov, Ilya; Moiseenko, Dmitry; Maksimov, Pavel; Maruschak, Pavlo; Yakovlev, Alexander; Gomorova, Julia; Mishin, Ivan; Schmauder, SiegfriedThe aim of the paper was to investigate the helical rolling parameters (a number of passes) for the microstructural modification and the low-temperature impact toughness improvement of the 09Mn2Si High Strength Low-Alloyed (HSLA) steel. In order to achieve this purpose, work spent to crack initiation and propagation was analyzed and compared with patterns of fracture surfaces. The microstructure and impact toughness values were presented in the temperature range from +20 to -70°C. Also, the fracture mechanisms in individual regions on the fracture surfaces were discussed. In addition, a methodology for computer simulation of the process was developed and implemented within the framework of the excitable cellular automata method and its integration with the kinetic theory of fracture. Finally, a theoretical analysis of the effect of grain shapes and orientations on the strain response patterns of a certain meso-volume simulating the material after the helical rolling was carried out.Item Open Access A numerical method for the generation of hierarchical Poisson Voronoi microstructures applied in micromechanical finite element simulations : part I: method(2020) Schneider, Y.; Weber, U.; Wasserbäch, W.; Zielke, R.; Schmauder, S.; Tillmann, W.Poisson Voronoi (PV) tessellations as artificial microstructures are widely used in investigations of material deformation behaviors. However, a PV structure usually describes a relative homogeneous field. This work presents a simple numerical method for generating 2D/3D artificial microstructures based on hierarchical PV tessellations. If grains/particles of a phase cover a large size span, the concept of “artificial phases” can be used to create a more realistic size distribution. From case to case, detailed microstructural features cannot be directly achieved by commercial or free softwares, but they are necessary for a deep or thorough study of the material deformation behavior. PV tessellations created in our process can fulfill individual requirements from material designs. Another reason to use PV tessellations is due to the limited experimental data. Concerning the application of PV microstructures, four examples are given. The FE models and results will be presented in consecutive works, i.e. “part II: applications”.Item Open Access Performance evaluation of wire cloth micro heat exchangers(2020) Fugmann, Hannes; Martens, Sebastian; Balzer, Richard; Brenner, Martin; Schnabel, Lena; Mehring, CarstenThe purpose of this study is to validate a thermal-hydraulic simulation model for a new type of heat exchanger for mass, volume, and coolant/refrigerant charge reduction. The new heat exchanger consists of tubes with diameters in the range of 1 mm and wires in the range of 100 μm, woven together to form a 200×200×80 mm3 wire cloth heat exchanger. Performance of the heat exchanger has been experimentally evaluated using water as inner and air as outer heat transfer medium. A computational thermal and fluid dynamic model has been implemented in OpenFOAM®. The model allows variation of geometry and operating conditions. The validation of the model is based on one single geometry with an opaque fabric and air-side velocities between 1 and 7 m/s. The simulated and measured pressure drops are found to be in good agreement with a relative difference of less than 16%. For the investigated cases, the effective heat transfer coefficients are in very good agreement (less than 5%) when adapting the contact resistance between tubes and wires. The numerical model describes the fluid flow and heat transfer of the tested heat exchanger with adequate precision and can be used for future wire cloth heat exchanger dimensioning for a variety of applications.Item Open Access Impact of long-term weathering on the properties of a digestate-based biocomposite(2021) Gebhardt, Marion; Milwich, Markus; Gresser, Götz T.; Lemmer, AndreasNatural fibre composites are increasingly used. For many applications, the long-term stability of the mechanical properties is crucial. Therefore, the effects of weathering of a biocomposite made from fibrous digestate and bio-based thermoset are investigated. The fibre component of the composite comes from digestate of a German biogas station which processes hop vines as main substrate. The matrix is a plant-oil-based epoxy resin. The samples were alternately exposed to UV radiation and moisture for various lengths of time. Afterwards, the material strength and water absorption were tested. As a result, the weathering leads to a decrease of strength but not to a high increase of water uptake.Item Open Access Microwave beam broadening due to turbulent plasma density fluctuations within the limit of the Born approximation and beyond(2018) Köhn, Alf; Guidi, L.; Holzhauer, Eberhard; Maj, O.; Poli, E.; Snicker, A.; Weber, H.Plasma turbulence, and edge density fluctuations in particular, can under certain conditions broaden the cross-section of injected microwave beams significantly. This can be a severe problem for applications relying on well-localized deposition of the microwave power, like the control of MHD instabilities. Here we investigate this broadening mechanism as a function of fluctuation level, background density and propagation length in a fusion-relevant scenario using two numerical codes, the full-wave code IPF-FDMC and the novel wave kinetic equation solver WKBeam. The latter treats the effects of fluctuations using a statistical approach, based on an iterative solution of the scattering problem (Born approximation). The full-wave simulations are used to benchmark this approach. The Born approximation is shown to be valid over a large parameter range, including ITER-relevant scenarios.Item Open Access Compounding, rheology and numerical simulation of highly filled graphite compounds for potential fuel cell applications(2023) Celik, Alptekin; Willems, Fabian; Tüzün, Mustafa; Marinova, Svetlana; Heyn, Johannes; Fiedler, Markus; Bonten, ChristianHighly filled plastics may offer a suitable solution within the production process for bipolar plates. However, the compounding of conductive additives and the homogeneous mixing of the plastic melt, as well as the accurate prediction of the material behavior, pose a major challenge for polymer engineers. To support the engineering design process of compounding by twin-screw extruders, this present study offers a method to evaluate the achievable mixing quality based on numerical flow simulations. For this purpose, graphite compounds with a filling content of up to 87 wt.-% were successfully produced and characterized rheologically. Based on a particle tracking method, improved element configurations were found for twin-screw compounding. Furthermore, a method to characterize the wall slip ratios of the compounded material system with different filler content is presented, since highly filled material systems often tend to wall slip during processing, which could have a very large influence on accurate prediction. Numerical simulations of the high capillary rheometer were conducted to predict the pressure loss in the capillary. The simulation results show a good agreement and were experimentally validated. In contrast to the expectation, higher filler grades showed only a lower wall slip than compounds with a low graphite content. Despite occurring wall slip effects, the developed flow simulation for the design of slit dies can provide a good prediction for both low and high filling ratios of the graphite compounds.Item Open Access Flow front monitoring in high-pressure resin transfer molding using phased array ultrasonic testing to optimize mold filling simulations(2023) Littner, Linus; Protz, Richard; Kunze, Eckart; Bernhardt, Yannick; Kreutzbruck, Marc; Gude, MaikDuring the production of fiber-reinforced plastics using resin transfer molding (RTM), various characteristic defects and flaws can occur, such as fiber displacement and fiber waviness. Particularly in high-pressure RTM (HP-RTM), fiber misalignments are generated during infiltration by local peaks in the flow rate, leading to a significant reduction in the mechanical properties. To minimize or avoid this effect, the manufacturing process must be well controlled. Simulative approaches allow for a basic design of the mold filling process; however, due to the high number of influencing variables, the real behavior cannot be exactly reproduced. The focus of this work is on flow front monitoring in an HP-RTM mold using phased array ultrasonic testing. By using an established non-destructive testing instrument, the effort required for integration into the manufacturing process can be significantly reduced. For this purpose, investigations were carried out during the production of test specimens composed of glass fiber-reinforced polyurethane resin. Specifically, a phased array ultrasonic probe was used to record individual line scans over the form filling time. Taking into account the specifications of the probe used in these experiments, an area of 48.45 mm was inspected with a spatial resolution of 0.85 mm derived from the pitch. Due to the aperture that had to be applied to improve the signal-to-noise ratio, an averaging of the measured values similar to a moving average over a window of 6.8 mm had to be considered. By varying the orientation of the phased array probe and therefore the orientation of the line scans, it is possible to determine the local flow velocities of the matrix system during mold filling. Furthermore, process simulation studies with locally varying fiber volume contents were carried out. Despite the locally limited measuring range of the monitoring method presented, conclusions about the global flow behavior in a large mold can be drawn by comparing the experimentally determined results with the process simulation studies. The agreement between the measurement and simulation was thus improved by around 70%.Item Open Access A novel modeling approach for plastics melting within a CFD-DEM framework(2021) Celik, Alptekin; Bonten, Christian; Togni, Riccardo; Kloss, Christoph; Goniva, ChristophExisting three-dimensional modeling approaches to single-screw extrusion can be classified according to the process sections. The discrete element method (DEM) allows describing solids transport in the feed section. The melt flow in the melt section can be calculated by means of computational fluid dynamics (CFD). However, the current state of the art only allows a separate consideration of the respective sections. A joint examination of the process sections still remains challenging. In this study, a novel modeling approach is presented, allowing a joint consideration of solids and melt transport and, beyond that, the formation of melt. For this purpose, the phase transition from the solid to liquid states is modeled for the first time within the framework CFDEMCoupling®, combining CFD and DEM by a novel melting model implemented in this study. In addition, a melting apparatus for the validation of the novel melting model is set up and put into operation. CFD-DEM simulations are carried out in order to calculate the melting rate and are compared to experimental results. A good agreement between the simulation and experimental results is found. From the findings, it can be assumed that the CFD-DEM simulation of single-screw extruder with a joint consideration of the feed and melt section is feasible.Item Open Access Electrically heated oxide ceramic tubes for high temperature reactions(2023) Matthies, Jörn; Schall, Thomas; Pritzkow, Walter; Tuttlies, Ute; Nieken, UlrichEndothermic high temperature reactions are usually carried out in metal tubes heated by gas burners. Electrical heating allows substantial reduction of CO2 emissions. We propose the usage of a composite tube, where a thin metallic layer is embedded between an inner and outer ceramic layer. While monolithic ceramics suffer from brittleness and low tolerance to thermal stress, only the inner layer is made from monolithic ceramics, while the outer layer is made of fiber reinforced oxide ceramics. In first tests the hybrid ceramic tube was electrically heated to 1250 °C with a maximum heat release of 85 kW m-2.Item Open Access Fatigue improvement of AlSi10Mg fabricated by laser-based powder bed fusion through heat treatment(2021) Sajadi, Felix; Tiemann, Jan-Marc; Bandari, Nooshin; Cheloee Darabi, Ali; Mola, Javad; Schmauder, SiegfriedThis study aimed to identify an optimal heat-treatment parameter set for an additively manufactured AlSi10Mg alloy in terms of increasing the hardness and eliminating the anisotropic microstructural characteristics of the alloy in as-built condition. Furthermore, the influence of these optimized parameters on the fatigue properties of the alloy was investigated. In this respect, microstructural characteristics of an AlSi10Mg alloy manufactured by laser-based powder bed fusion in non-heat-treated and heat-treated conditions were investigated. Their static and dynamic mechanical properties were evaluated, and fatigue behavior was explained by a detailed examination of fracture surfaces. The majority of the microstructure in the non-heat-treated condition was composed of columnar grains oriented parallel to the build direction. Further analysis revealed a high fraction of pro-eutectic α-Al. Through heat treatment, the alloy was successfully brought to its peak-hardened condition, while eliminating the anisotropic microstructural features. Yield strength and ductility increased simultaneously after heat treatment, which is due to the relief of residual stresses, preservation of refined grains, and introduction of precipitation strengthening. The fatigue strength, calculated at 107 cycles, improved as well after heat treatment, and finally, detailed fractography revealed that a more ductile fracture mechanism occurred in the heat-treated condition compared to the non-heat-treated condition.