04 Fakultät Energie-, Verfahrens- und Biotechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5

Browse

Search Results

Now showing 1 - 10 of 12
  • Thumbnail Image
    ItemOpen Access
    Light-addressable actuator-sensor platform for monitoring and manipulation of pH gradients in microfluidics : a case study with the enzyme penicillinase
    (2021) Welden, Rene; Jablonski, Melanie; Wege, Christina; Keusgen, Michael; Wagner, Patrick Hermann; Wagner, Torsten; Schöning, Michael J.
    The feasibility of light-addressed detection and manipulation of pH gradients inside an electrochemical microfluidic cell was studied. Local pH changes, induced by a light-addressable electrode (LAE), were detected using a light-addressable potentiometric sensor (LAPS) with different measurement modes representing an actuator-sensor system. Biosensor functionality was examined depending on locally induced pH gradients with the help of the model enzyme penicillinase, which had been immobilized in the microfluidic channel. The surface morphology of the LAE and enzyme-functionalized LAPS was studied by scanning electron microscopy. Furthermore, the penicillin sensitivity of the LAPS inside the microfluidic channel was determined with regard to the analyte’s pH influence on the enzymatic reaction rate. In a final experiment, the LAE-controlled pH inhibition of the enzyme activity was monitored by the LAPS.
  • Thumbnail Image
    ItemOpen Access
    Field-effect sensors for virus detection : from Ebola to SARS-CoV-2 and plant viral enhancers
    (2020) Poghossian, Arshak; Jablonski, Melanie; Molinnus, Denise; Wege, Christina; Schöning, Michael J.
    Coronavirus disease 2019 (COVID-19) is a novel human infectious disease provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific vaccines or drugs against COVID-19 are available. Therefore, early diagnosis and treatment are essential in order to slow the virus spread and to contain the disease outbreak. Hence, new diagnostic tests and devices for virus detection in clinical samples that are faster, more accurate and reliable, easier and cost-efficient than existing ones are needed. Due to the small sizes, fast response time, label-free operation without the need for expensive and time-consuming labeling steps, the possibility of real-time and multiplexed measurements, robustness and portability (point-of-care and on-site testing), biosensors based on semiconductor field-effect devices (FEDs) are one of the most attractive platforms for an electrical detection of charged biomolecules and bioparticles by their intrinsic charge. In this review, recent advances and key developments in the field of label-free detection of viruses (including plant viruses) with various types of FEDs are presented. In recent years, however, certain plant viruses have also attracted additional interest for biosensor layouts: Their repetitive protein subunits arranged at nanometric spacing can be employed for coupling functional molecules. If used as adapters on sensor chip surfaces, they allow an efficient immobilization of analyte-specific recognition and detector elements such as antibodies and enzymes at highest surface densities. The display on plant viral bionanoparticles may also lead to long-time stabilization of sensor molecules upon repeated uses and has the potential to increase sensor performance substantially, compared to conventional layouts. This has been demonstrated in different proof-of-concept biosensor devices. Therefore, richly available plant viral particles, non-pathogenic for animals or humans, might gain novel importance if applied in receptor layers of FEDs. These perspectives are explained and discussed with regard to future detection strategies for COVID-19 and related viral diseases.
  • Thumbnail Image
    ItemOpen Access
    Detection of plant virus particles with a capacitive field-effect sensor
    (2021) Jablonski, Melanie; Poghossian, Arshak; Keusgen, Michael; Wege, Christina; Schöning, Michael J.
    Plant viruses are major contributors to crop losses and induce high economic costs worldwide. For reliable, on-site and early detection of plant viral diseases, portable biosensors are of great interest. In this study, a field-effect SiO2-gate electrolyte-insulator-semiconductor (EIS) sensor was utilized for the label-free electrostatic detection of tobacco mosaic virus (TMV) particles as a model plant pathogen. The capacitive EIS sensor has been characterized regarding its TMV sensitivity by means of constant-capacitance method. The EIS sensor was able to detect biotinylated TMV particles from a solution with a TMV concentration as low as 0.025 nM. A good correlation between the registered EIS sensor signal and the density of adsorbed TMV particles assessed from scanning electron microscopy images of the SiO2-gate chip surface was observed. Additionally, the isoelectric point of the biotinylated TMV particles was determined via zeta potential measurements and the influence of ionic strength of the measurement solution on the TMV-modified EIS sensor signal has been studied.
  • Thumbnail Image
    ItemOpen Access
    Differential effects of RNA-dependent RNA polymerase 6 (RDR6) silencing on new and old world begomoviruses in Nicotiana benthamiana
    (2023) Noris, Emanuela; Pegoraro, Mattia; Palzhoff, Sandra; Urrejola, Catalina; Wochner, Nicolai; Kober, Sigi; Ruoff, Kerstin; Matić, Slavica; Schnepf, Vera; Weisshaar, Nina; Wege, Christina
    RNA-dependent RNA polymerases (RDRs) are key players in the antiviral defence mediated by RNA silencing in plants. RDR6 is one of the major components of the process, regulating the infection of certain RNA viruses. To better clarify its function against DNA viruses, we analyzed the effect of RDR6 inactivation (RDR6i) in N. benthamiana plants on two phloem-limited begomoviruses, the bipartite Abutilon mosaic virus (AbMV) and the monopartite tomato yellow leaf curl Sardinia virus (TYLCSV). We observed exacerbated symptoms and DNA accumulation for the New World virus AbMV in RDR6i plants, varying with the plant growth temperature (ranging from 16 °C to 33 °C). However, for the TYLCSV of Old World origin, RDR6 depletion only affected symptom expression at elevated temperatures and to a minor extent; it did not affect the viral titre. The accumulation of viral siRNA differed between the two begomoviruses, being increased in RDR6i plants infected by AbMV but decreased in those infected by TYLCSV compared to wild-type plants. In situ hybridization revealed a 6.5-fold increase in the number of AbMV-infected nuclei in RDR6i plants but without egress from the phloem tissues. These results support the concept that begomoviruses adopt different strategies to counteract plant defences and that TYLCSV evades the functions exerted by RDR6 in this host.
  • Thumbnail Image
    ItemOpen Access
    Covalent incorporation of tobacco mosaic virus increases the stiffness of poly(ethylene glycol) diacrylate hydrogels
    (2018) Southan, Alexander; Lang, Tina; Schweikert, Michael; Tovar, Günter E. M.; Wege, Christina; Eiben, Sabine
    Hydrogels are versatile materials, finding applications as adsorbers, supports for biosensors and biocatalysts or as scaffolds for tissue engineering. A frequently used building block for chemically cross-linked hydrogels is poly(ethylene glycol) diacrylate (PEG-DA). However, after curing, PEG-DA hydrogels cannot be functionalized easily. In this contribution, the stiff, rod-like tobacco mosaic virus (TMV) is investigated as a functional additive to PEG-DA hydrogels. TMV consists of more than 2000 identical coat proteins and can therefore present more than 2000 functional sites per TMV available for coupling, and thus has been used as a template or building block for nano-scaled hybrid materials for many years. Here, PEG-DA (Mn = 700 g/mol) hydrogels are combined with a thiol-group presenting TMV mutant (TMVCys). By covalent coupling of TMVCys into the hydrogel matrix via the thiol-Michael reaction, the storage modulus of the hydrogels is increased compared to pure PEG-DA hydrogels and to hydrogels containing wildtype TMV (wt-TMV) which is not coupled covalently into the hydrogel matrix. In contrast, the swelling behaviour of the hydrogels is not altered by TMVCys or wt-TMV. Transmission electron microscopy reveals that the TMV particles are well dispersed in the hydrogels without any large aggregates. These findings give rise to the conclusion that well-defined hydrogels were obtained which offer the possibility to use the incorporated TMV as multivalent carrier templates e.g. for enzymes in future studies.
  • Thumbnail Image
    ItemOpen Access
    Facile purification and use of tobamoviral nanocarriers for antibody-mediated display of a two-enzyme system
    (2023) Wendlandt, Tim; Koch, Claudia; Britz, Beate; Liedek, Anke; Schmidt, Nora; Werner, Stefan; Gleba, Yuri; Vahidpour, Farnoosh; Welden, Melanie; Poghossian, Arshak; Schöning, Michael J.; Eber, Fabian J.; Jeske, Holger; Wege, Christina
    Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.
  • Thumbnail Image
    ItemOpen Access
    Soft sub‐structured multi‐material biosensor hydrogels with enzymes retained by plant viral scaffolds
    (2023) Grübel, Jana; Wendlandt, Tim; Urban, Daniela; Jauch, Corinna O.; Wege, Christina; Tovar, Günter E. M.; Southan, Alexander
    An all‐soft multi‐material combination consisting of a hydrogel based on poly(ethylene glycol) (PEG) coated with spatially defined spots of gelatin methacryloyl (GM) containing selectively addressable viral nanorods is presented, and its basic application as a qualitative biosensor with reporter enzymes displayed on the tobacco mosaic virus (TMV) bioscaffolds within the GM is demonstrated. Biologically inert PEG supports are equipped with GM spots serving as biological matrix for enzymes clustered on TMV particles preventing diffusion out of the gel. For this multi‐material combination, i) the PEG‐based hydrogel surface is modified to achieve a clear boundary between coated and non‐coated regions by introducing either isothiouronium or thiol groups. ii) Cross‐linking of the GM spots is studied to achieve anchoring to the hydrogel surface. iii) The enzymes horseradish peroxidase or penicillinase (Pen) are conjugated to TMV and integrated into the GM matrix. In contrast to free enzymes, enzyme‐decorated TMVs persist in GM spots and show sustained enzyme activity as evidenced by specific color reaction after 7 days of washing, and for Pen after 22 months after dry storage. Therefore, the integration of enzyme‐coupled TMV into hydrogel matrices is a promising and versatile approach to obtaining reusable and analyte‐specific sensor components.
  • Thumbnail Image
    ItemOpen Access
    Towards multi-analyte detection with field-effect capacitors modified with tobacco mosaic virus bioparticles as enzyme nanocarriers
    (2022) Welden, Melanie; Poghossian, Arshak; Vahidpour, Farnoosh; Wendlandt, Tim; Keusgen, Michael; Wege, Christina; Schöning, Michael J.
    Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO2-Ta2O5 layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1–3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta2O5-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate.
  • Thumbnail Image
    ItemOpen Access
    Capacitive field-effect biosensor studying adsorption of tobacco mosaic virus particles
    (2021) Jablonski, Melanie; Poghossian, Arshak; Severins, Robin; Keusgen, Michael; Wege, Christina; Schöning, Michael J.
  • Thumbnail Image
    ItemOpen Access
    Getting hold of the tobamovirus particle : why and how? Purification routes over time and a new customizable approach
    (2024) Wendlandt, Tim; Britz, Beate; Kleinow, Tatjana; Hipp, Katharina; Eber, Fabian J.; Wege, Christina
    This article develops a multi-perspective view on motivations and methods for tobamovirus purification through the ages and presents a novel, efficient, easy-to-use approach that can be well-adapted to different species of native and functionalized virions. We survey the various driving forces prompting researchers to enrich tobamoviruses, from the search for the causative agents of mosaic diseases in plants to their increasing recognition as versatile nanocarriers in biomedical and engineering applications. The best practices and rarely applied options for the serial processing steps required for successful isolation of tobamoviruses are then reviewed. Adaptations for distinct particle species, pitfalls, and ‘forgotten’ or underrepresented technologies are considered as well. The article is topped off with our own development of a method for virion preparation, rooted in historical protocols. It combines selective re-solubilization of polyethylene glycol (PEG) virion raw precipitates with density step gradient centrifugation in biocompatible iodixanol formulations, yielding ready-to-use particle suspensions. This newly established protocol and some considerations for perhaps worthwhile further developments could serve as putative stepping stones towards preparation procedures appropriate for routine practical uses of these multivalent soft-matter nanorods.