04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
2 results
Search Results
Item Open Access A two-compartment fermentation system to quantify strain-specific interactions in microbial co-cultures(2023) Ulmer, Andreas; Veit, Stefan; Erdemann, Florian; Freund, Andreas; Loesch, Maren; Teleki, Attila; Zeidan, Ahmad A.; Takors, RalfTo fulfil the growing interest in investigating microbial interactions in co-cultures, a novel two-compartment bioreactor system was developed, characterised, and implemented. The system allowed for the exchange of amino acids and peptides via a polyethersulfone membrane that retained biomass. Further system characterisation revealed a Bodenstein number of 18, which hints at backmixing. Together with other physical settings, the existence of unwanted inner-compartment substrate gradients could be ruled out. Furthermore, the study of Damkoehler numbers indicated that a proper metabolite supply between compartments was enabled. Implementing the two-compartment system (2cs) for growing Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus, which are microorganisms commonly used in yogurt starter cultures, revealed only a small variance between the one-compartment and two-compartment approaches. The 2cs enabled the quantification of the strain-specific production and consumption rates of amino acids in an interacting S. thermophilus-L. bulgaricus co-culture. Therefore, comparisons between mono- and co-culture performance could be achieved. Both species produce and release amino acids. Only alanine was produced de novo from glucose through potential transaminase activity by L. bulgaricus and consumed by S. thermophilus. Arginine availability in peptides was limited to S. thermophilus’ growth, indicating active biosynthesis and dependency on the proteolytic activity of L. bulgaricus. The application of the 2cs not only opens the door for the quantification of exchange fluxes between microbes but also enables continuous production modes, for example, for targeted evolution studies.Item Open Access Scale-up of gas fermentations : modelling tools for risk minimisation(2020) Siebler, FloraThe reduction of greenhouse gas emissions is a global endeavour supported by society, politics and industry. In recent years, circular economy, reducing the exploitation of fossil energy sources, have increased the demand for new solutions when producing commodities and fine chemicals. Caboxydotrophic fermentations with acetogenic bacteria are potential processes in order to reach these goals. They convert gaseous substrates such as CO, and CO2/H2 mixtures. However, gases as sole substrate are rather challenging, not only in small lab-scales but especially in large-scale. Transferring an efficient fermentation process from experimental to industrial scales often results in unpredictable performance losses. This study presents an in silico concept minimising possible risks in gas fermentations up-scaling. First, the economical feasibility of various fermentation methods is investigated. Then, two computational tools are presented using Clostridium ljungdahlii as model organism and synthesis gas as substrate in a 125 m3 bubble column reactor. The combination of economical investigation with modelling tools show high potential for successful scale-up of gas fermentations. With this concept feasibility, reactor design, operation mode and general risk minimisation can be analysed and specified.