04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
2 results
Search Results
Item Open Access Coupled electrohydrodynamic and thermocapillary instability of multi-phase flows using an incompressible smoothed particle hydrodynamics method(2022) Almasi, Fatemeh; Hopp-Hirschler, Manuel; Hadjadj, Abdellah; Nieken, Ulrich; Safdari Shadloo, MostafaThis paper concerns the study of coupled effects of electrohydrodynamic (EHD) and thermocapillary (TC) on the dynamic behaviour of a single liquid droplet. An incompressible Smoothed Particle Hydrodynamic (ISPH) multiphase model is used to simulate EHD-TC driven flows. The complex hydrodynamic interactions are modeled using the continuum surface force (CSF) method, in which the gradient of the interfacial tension and the Marangoni forces are calculated with an approximated error or 0.014% in the calculation of Marangoni force compared to the analytical solutions which is a significant improvement in comparison with previous SPH simulation studies, under the assumption that the thermocapillarity generates sufficiently large stress to allow droplet migration, while the electrohydrodynamic phenomena influences the droplet morphology depending on the electrical and thermal ratios of the droplet and the ambient fluid. This study shows that, when applying a vertical electric field and thermal gradient, the droplet starts to stretch horizontally towards a break-up condition at a high rate of electrical permitivity. The combined effect of thermal gradient and electric field tends to push further the droplet towards the break-up regime. When the thermal gradient and the electric field vector are orthogonal, results show that the droplet deformation would take place more slowly and the Marangoni forces cause the droplet to migrate, while the stretching in the direction of the electric field is not seen to be as strong as in the first case.Item Open Access Novel pyrrolidinium-functionalized styrene-b-ethylene-b-butylene-b-styrene copolymer based anion exchange membrane with flexible spacers for water electrolysis(2023) Xu, Ziqi; Delgado, Sofia; Atanasov, Vladimir; Morawietz, Tobias; Gago, Aldo Saul; Friedrich, K. AndreasAnion exchange membranes (AEM) are core components for alkaline electrochemical energy technologies, such as water electrolysis and fuel cells. They are regarded as promising alternatives for proton exchange membranes (PEM) due to the possibility of using platinum group metal (PGM)-free electrocatalysts. However, their chemical stability and conductivity are still of great concern, which is appearing to be a major challenge for developing AEM-based energy systems. Herein, we highlight an AEM with styrene-b-ethylene-b-butylene-b-styrene copolymer (SEBS) as a backbone and pyrrolidinium or piperidinium functional groups tethered on flexible ethylene oxide spacer side-chains (SEBS-Py2O6). This membrane reached 27.8 mS cm-1 hydroxide ion conductivity at room temperature, which is higher compared to previously obtained piperidinium-functionalized SEBS reaching up to 10.09 mS cm-1. The SEBS-Py206 combined with PGM-free electrodes in an AWE water electrolysis (AEMWE) cell achieves 520 mA cm-2 at 2 V in 0.1 M KOH and 171 mA cm-2 in ultra-pure water (UPW). This high performance indicates that SEBS-Py2O6 membranes are suitable for application in water electrolysis.