04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
6 results
Search Results
Item Open Access Lab-scale investigation of palm shell char as tar reforming catalyst(2020) Chen, Yen-Hau; Schmid, Max; Chang, Chia-Chi; Chang, Ching-Yuan; Scheffknecht, GünterThis research investigated the application of palm shell char as a catalyst for the catalytic steam reforming of tar after the sorption enhanced gasification (SEG) process. The catalytic activities of palm shell char and metal-supported palm shell char were tested in a simulated SEG derived syngas with tar model compounds (i.e., toluene and naphthalene) at a concentration of 10 g m-3 NTP. The results indicated that palm shell char had an experimentally excellent catalytic activity for tar reforming with toluene and naphthalene conversions of 0.8 in a short residence time of 0.17 s at 900 °C. A theoretical residence time to reach the complete naphthalene conversion was 1.2 s at 900 °C for palm shell char, demonstrating a promising activity similar to wood char and straw char, but better than CaO. It was also found that potassium and iron-loaded palm shell chars exhibited much better catalytic activity than palm shell char, while the parallel reaction of gasification of K-loaded palm shell char influenced the conversion with its drastic mass loss. Moreover, contrary to CaO, palm shell char presented relatively low selectivity to benzene, and its spontaneous gasification generated extra syngas. In summary, the present study demonstrated that the low-cost material, palm shell char, can successfully be used as the tar-reforming catalyst after SEG process.Item Open Access Steam-oxygen fluidized bed gasification of sewage sludge(2023) Schmid, Max; Scheffknecht, Günter (Univ.-Prof. Dr. techn.)Sewage sludge is a residue that is generated unavoidably by the population. On a first sight, sewage sludge may be a hazardous waste that requires safe disposal. By looking closer, it is recognized as secondary resource. The mineral fraction contains valuable elements such as phosphorous, which can be retrieved as secondary raw material. This thesis focuses on the organic fraction, which is a renewable fuel and carbon source and can be used to substitute fossil carbon in fuels and chemicals. The first step in converting sewage sludge to renewable goods is syngas production via gasification. The experimental work of this thesis demonstrated the feasibility of synthesis gas production from sewage sludge by steam-oxygen fluidized bed gasification. It was shown that the process works reliably in the investigated 20 kW scale and that the syngas contains high H2 and CO concentrations and is thus suitable for synthesis of fuels and chemicals. The impurities NH3, H2S, COS and tar species, including heterocyclic species such as pyridine, were measured in considerable concentrations in the syngas. Small amounts of limestone bed additive enabled cracking of heavy tars and partial capture of H2S and COS. It was further found that the cold gas efficiency increases with rising gasification temperature due to improved tar and char conversion at higher temperatures. The typical operation temperature 850 °C requires an oxygen ratio of 0.33, obtaining a cold gas efficiency of 63 %. Moreover, the H2/CO-ratio could be controlled efficiently by altering the steam to carbon ratio, as steam promotes the water gas shift reaction in the gasifier to achieve the desired stoichiometry for synthesis, however, resulting in higher energy demand for steam provision. The experimental results can be utilized for process design, e.g., for a TRL 7-demonstrator. Furthermore, a gasifier model was developed and an integrated process chain was simulated to assess the conversion of sewage sludge to synthetic natural gas (SNG) with and without inclusion of power-to-gas through electrolysis. The total efficiency of the conversion including own consumption for the case without electrolysis was 51 % with a carbon utilization of 33 %. These values could be enhanced by inclusion of power-to-gas. It was predicted that the produced SNG has a CH4-concentration of between 0.81 m3 m 3 and 0.84 m3 m 3 and nitrogen concentrations of up to 0.16 m3 m 3 originating from fuel-bound nitrogen. The simulations on process integration showed that up to 20% of the sewage sludge feed can be dried by heat integration. This implies that also external heat sources have to be used for drying. Overall, the steam-oxygen gasification proved to be an efficient and technically feasible process for sewage sludge treatment and can be considered as an alternative to fluidized bed incineration for future mono-treatment plants.Item Open Access Parametric study on the adjustability of the syngas composition by sorption-enhanced gasification in a dual-fluidized bed pilot plant(2021) Hafner, Selina; Schmid, Max; Scheffknecht, GünterFinding a way for mitigating climate change is one of the main challenges of our generation. Sorption-enhanced gasification (SEG) is a process by which syngas as an important intermediate for the synthesis of e.g., dimethyl ether (DME), bio-synthetic natural gas (SNG) and Fischer-Tropsch (FT) products or hydrogen can be produced by using biomass as feedstock. It can, therefore, contribute to a replacement for fossil fuels to reduce greenhouse gas (GHG) emissions. SEG is an indirect gasification process that is operated in a dual-fluidized bed (DFB) reactor. By the use of a CO2-active sorbent as bed material, CO2 that is produced during gasification is directly captured. The resulting enhancement of the water-gas shift reaction enables the production of a syngas with high hydrogen content and adjustable H2/CO/CO2-ratio. Tests were conducted in a 200 kW DFB pilot-scale facility under industrially relevant conditions to analyze the influence of gasification temperature, steam to carbon (S/C) ratio and weight hourly space velocity (WHSV) on the syngas production, using wood pellets as feedstock and limestone as bed material. Results revealed a strong dependency of the syngas composition on the gasification temperature in terms of permanent gases, light hydrocarbons and tars. Also, S/C ratio and WHSV are parameters that can contribute to adjusting the syngas properties in such a way that it is optimized for a specific downstream synthesis process.Item Open Access Oxy-combustion of solid recovered fuel in a semi-industrial CFB reactor: on the implications of gas atmosphere and combustion temperature(2022) Moreno, Joseba; Schmid, Max; Scharr, Steven; Scheffknecht, GünterOxy-fuel combustion of refuse waste is gaining considerable attention as a viable CO2 negative technology that can enable the continued use of stationary combustion plants during the transition to renewable energy sources. Compared to fossil fuels, waste-derived fuels tend to be highly heterogeneous and to contain a greater amount of alkaline metals and chlorine. Therefore, experimental studies are mandatory to thoroughly elucidate refuse materials’ combustion and pollutant formation behavior. This paper presents an experimental investigation on the air and oxy-fuel combustion of solid recovered fuel at a 200 kWth circulating fluidized bed facility. In the course of two experimental campaigns, the effects of combustion atmosphere and temperature on pollutant formation (i.e., NOx, SO2, and HCl) and reactor hydrodynamics were systematically studied. In contrast to air-firing conditions, the experimental results showed that oxy-fuel combustion enhanced the volume concentration of NOx by about 50% while simultaneously decreasing the fuel-specific NOx emissions (by about 33%). The volume concentrations of SO2 and HCl were significantly influenced by the absorption capacity of calcium-containing ash particles, yielding corresponding values close to 10 and 200 ppmv at 871-880 °C under oxy-fuel combustion conditions. In addition, the analysis of hydrodynamic data revealed that smooth temperature profiles are indispensable to mitigate bed sintering and agglomeration risks during oxy-fuel operation. The results included in this study provide a valuable contribution to the database of experimental information on the oxy-fuel combustion of alternative fuels, which can be applied in future process model validations and scale-up studies.Item Open Access Oxy-fuel combustion of hard coal, wheat straw, and solid recovered fuel in a 200 kWth calcium looping CFB calciner(2021) Moreno, Joseba; Hornberger, Matthias; Schmid, Max; Scheffknecht, GünterItem Open Access Experimental parameter study on synthesis gas production by steam-oxygen fluidized bed gasification of sewage sludge(2021) Schmid, Max; Hafner, Selina; Scheffknecht, Günter