04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
5 results
Search Results
Item Open Access Nanomechanische und nanoelektrische rasterkraftmikroskopische Analyse von Polymerelektrolytbrennstoffzellen(2022) Morawietz, Tobias; Friedrich, K. Andreas (Prof. Dr. rer. nat.)Die vorliegende Arbeit beschäftigt sich mit der Analyse von Brennstoffzellenkomponenten. Dabei wird der Fokus dieser Arbeit auf die Analyse der katalytischen Schichten mit dem Rasterkraftmikroskop gelegt. Das Rasterkraftmikroskop kann Strukturen mit wenigen Nanometern auflösen und dabei die materialspezifischen Eigenschaften aufzeichnen. Der Einsatz und die Weiterentwicklung von Rasterkraftmikroskop basierten Messmethoden für diesen Anwendungszweck wird in dieser Arbeit dargelegt. Die (Nano)-Struktur von vielen Brennstoffzellenkomponenten konnte mit den bisherigen verwendeten Methoden nicht vollständig aufgeklärt werden. Vor allem die Struktur des Ionomers innerhalb der Elektrode ist eine Unbekannte. Über das materialsensitive Rasterkraftmikroskop kann die Identifikation und Strukturanalyse der einzelnen Komponenten der katalytischen Schichten erfolgen. Die Struktur und die mechanischen und elektrischen Eigenschaften des Ionomers in der Elektrode ist für den Massentransport und die ionische/elektronische Leitfähigkeit von Bedeutung. Um die Eigenschaften des Ionomers in den Elektroden zu beschreiben, wurde die Nanostruktur des Polymerelektrolyten auf verschiedenen Größenskalen untersucht. Es werden in dieser Arbeit ultra-dünne Schichten und deren Eigenschaften, sowie die Ausbildung von Grenzschichten zur Gasphase beschrieben. Ausgegangen wird von der Struktur einzelner Ionomerbündel welche auf verschiedene Substrate abgesetzt wurden. Die Struktur dieser Primärstrukturen und die Ausbildung erster Schichten werden für Ionomere mit unterschiedlichem Äquivalentgewicht beschrieben. Es wurden eine minimale Bündelhöhe von 1,5 nm und ein lamellarer Aufbau von den Schichten gemessen. Die Bündelhöhe wird in Abhängigkeit von Temperatur und relativen Luftfeuchte dargestellt. Ultra-dünne Ionomerschichten wurden als Model für Schichten in den Elektroden hergestellt. Als Ultra-dünne Schichten werden Schichten bezeichnet, welche eine Dicke kleiner als 100 nm besitzen. Sehr dünne Schichten (< 12 nm) zeigten in den Messungen keine oder nur sehr geringe ionische Leitfähigkeit durch die Schicht. Mit katalytisch aktiven AFM Spitzen wurde eine Querleitfähigkeit dieser sehr dünnen Schichten und eine Schichtdickenabhänigkeit der Ionenleitfähigkeit nachgewiesen. Dickere Schichten über einen Mikrometer wurden über ein Tauchziehverfahren erzeugt, um die Ausbildung der kristallinen Bereiche sowie der Grenzphase zur Gasphase von Membranen mit bekannter Vorgeschichte zu beschreiben. In den Messungen zeigten sich Bereiche mit erhöhter Steifigkeit. Die Messungen der Steifigkeit konnte eine Proportionalität zur mit Dynamische Differenzkalorimetrie gemessenen Kristallinität der Ionomere gezeigt werden. Die Kristallinität nahm mit zunehmendem Äquivalentgewicht und Alter der Schichten zu. Die Untersuchungen der katalytischen Schichten mit dem Rasterkraftmikroskop zeigten einen deutlichen Kontrast in den Materialeigenschaften der katalytischen Schichten zwischen dem Ionomer und dem Katalysator. Dabei kann die Struktur sehr hoch aufgelöst vermessen werden. Je nach verwendeter Spitze liegt die laterale Auflösung zwischen 1-25 nm. Das Ionomer konnte durch höhere Adhäsion und Deformation, eine niedrigere Steifigkeit sowie keinen elektronischen Strom identifiziert werden. An Messungen der Oberfläche wurden die Bereiche, die den Katalysator umhüllen, sowie größere zusammenhängende Ionomerbereiche gemessen. An Mikrotom-Querschnitten, wurden in den katalytischen Schichten Ionomerschichten in einer Größe gefunden, die auch durch die ultra-dünnen Schichten als Modellelektroden erzeugt werden konnten. Diese Ionomerschichten umhüllen die Katalysatorpartikel. Die Dicke der Schichten lag im Bereich von ~2,5 nm - 15 nm und war abhängig von der Temperatur und relativen Luftfeuchte. Außerdem scheint die Ionomerschichtdicke von dem Herstellungsverfahren abhängig zu sein. Nach Betrieb der Brennstoffzellen wurde eine Abnahme der Schichtdicke festgestellt. Ein Zusammenhang zwischen Ausgangsschichtdicke und irreversibler Degradationsrate durch den Brennstoffzellenbetrieb wurde gezeigt. Nach Betrieb wurde über Rasterelektronenmikroskop-Messungen unterstützend eine Abnahme der Elektroden- und Membrandicke gemessen. Eine Abnahme des Gesamtionomers konnte über das Rasterkraftmikroskop, Energiedispersive Röntgenspektroskopie und Infrarotspektroskopie gezeigt werden. In der Membran bildete sich nach Betrieb ein Platinband, welches von der Position der Probe in der Membran Elektroden Einheit abhängig war. Eine Korrelation zwischen Degradationsrate und Ablagerung von Platin in der Membran konnte gezeigt werden. Die Ablagerung kann in sehr großem Ausmaß stattfinden, dass Kurzschlüsse durch die Membran festgestellt werden konnten, welche mit dem Rasterkraftmikroskop nachgewiesen werden konnten. In der Bildanalyse Software GeoDict wurden Modelle von den Elektroden nach den gemessenen Daten erstellt und verschiedene Faktoren, wie Ionomerschichtdicke, Katalysatordurchmesser und Bedeckung des Katalysators mit Ionomer auf die resultierende ionische und elektronische Leitfähigkeit untersucht. Zusammenfassend trägt diese Arbeit zur Aufklärung der Struktur und Eigenschaften von Polymerelektrolytbrennstoffzellen bei und zeigt Degradationsmechanismen auf.Item Open Access Scalable fabrication of multi-layered Cu-based electrodes via solvent-free method for the selective electrochemical conversion of CO2 to C2+ products(2024) Chen, Qinhao; Kube, Alexander; Rana, Bhawna; Biswas, Indro; Morawietz, Tobias; Kopljar, Dennis; Friedrich, Kaspar AndreasIn the research field of CO2 electroreduction, gas diffusion electrodes (GDEs) are predominantly manufactured through solvent-based processes. Meanwhile, the solvent-free method has gained heightened attention due to its potential to reduce operational and production expenses, while considering ecological aspects such as solvent evaporation, circulation, and waste treatment. Drawing from its successful applications in other fields, we have specifically developed a solvent-free manufacturing method to produce multi-layered Cu-based GDEs for CO2 electroreduction. The procedure is compatible with industrial production lines, specifically through a roll-to-roll process. By evaluating the interplay between production parameters and electrochemical performance of GDEs via various characterization methods, key factors, i.e., hydrophobicity, gas permeability, thickness, and pore size, were adjusted and applied to achieve a highly selective GDE towards C2+ products (alcohols and ethylene) at industrial relevant currents up to 300 mA cm-2 (ethylene ∼40%, ethanol ∼10%, n-propanol ∼15%).Item Open Access Novel pyrrolidinium-functionalized styrene-b-ethylene-b-butylene-b-styrene copolymer based anion exchange membrane with flexible spacers for water electrolysis(2023) Xu, Ziqi; Delgado, Sofia; Atanasov, Vladimir; Morawietz, Tobias; Gago, Aldo Saul; Friedrich, K. AndreasAnion exchange membranes (AEM) are core components for alkaline electrochemical energy technologies, such as water electrolysis and fuel cells. They are regarded as promising alternatives for proton exchange membranes (PEM) due to the possibility of using platinum group metal (PGM)-free electrocatalysts. However, their chemical stability and conductivity are still of great concern, which is appearing to be a major challenge for developing AEM-based energy systems. Herein, we highlight an AEM with styrene-b-ethylene-b-butylene-b-styrene copolymer (SEBS) as a backbone and pyrrolidinium or piperidinium functional groups tethered on flexible ethylene oxide spacer side-chains (SEBS-Py2O6). This membrane reached 27.8 mS cm-1 hydroxide ion conductivity at room temperature, which is higher compared to previously obtained piperidinium-functionalized SEBS reaching up to 10.09 mS cm-1. The SEBS-Py206 combined with PGM-free electrodes in an AWE water electrolysis (AEMWE) cell achieves 520 mA cm-2 at 2 V in 0.1 M KOH and 171 mA cm-2 in ultra-pure water (UPW). This high performance indicates that SEBS-Py2O6 membranes are suitable for application in water electrolysis.Item Open Access Exploring the interface of skin‐layered titanium fibers for electrochemical water splitting(2021) Liu, Chang; Shviro, Meital; Gago, Aldo S.; Zaccarine, Sarah F.; Bender, Guido; Gazdzicki, Pawel; Morawietz, Tobias; Biswas, Indro; Rasinski, Marcin; Everwand, Andreas; Schierholz, Roland; Pfeilsticker, Jason; Müller, Martin; Lopes, Pietro P.; Eichel, Rüdiger‐A.; Pivovar, Bryan; Pylypenko, Svitlana; Friedrich, K. Andreas; Lehnert, Werner; Carmo, MarceloWater electrolysis is the key to a decarbonized energy system, as it enables the conversion and storage of renewably generated intermittent electricity in the form of hydrogen. However, reliability challenges arising from titanium‐based porous transport layers (PTLs) have hitherto restricted the deployment of next‐generation water‐splitting devices. Here, it is shown for the first time how PTLs can be adapted so that their interface remains well protected and resistant to corrosion across ≈4000 h under real electrolysis conditions. It is also demonstrated that the malfunctioning of unprotected PTLs is a result triggered by additional fatal degradation mechanisms over the anodic catalyst layer beyond the impacts expected from iridium oxide stability. Now, superior durability and efficiency in water electrolyzers can be achieved over extended periods of operation with less‐expensive PTLs with proper protection, which can be explained by the detailed reconstruction of the interface between the different elements, materials, layers, and components presented in this work.Item Open Access Investigation of the degradation phenomena of a proton exchange membrane electrolyzer stack by successive replacement of aged components in single cells(2025) Kimmel, Benjamin; Morawietz, Tobias; Biswas, Indro; Sata, Noriko; Gazdzicki, Pawel; Gago, Aldo Saul; Friedrich, Kaspar AndreasDue to their compactness and high flexibility to operate under dynamic conditions, proton exchange membrane water electrolyzers (PEMWEs) are ideal systems for the production of green hydrogen from renewable energy sources. For the widespread implementation of PEMWEs, an understanding of their degradation mechanism is crucial. In this work, we analyze a commercial PEMWE stack via a novel approach of breaking down from the stack to the single-cell level. Therefore, the disassembled stack components are cut to fit into single cells. Then, the aged components are successively replaced with pristine or regenerated components (cleaned and polished), and electrochemical characterizations are conducted to investigate the contributions of the individual components on performance losses. In addition, several underlying degradation phenomena are identified using different physical ex-situ analysis methods. The catalyst-coated membrane (CCM) contributes the most to performance degradation because of contamination and ionomer rearrangement. Additionally, traces of calcium, likely due to insufficient water purification used during operation or for cleaning the cell components, were found. Significant oxidation was observed on the anodic components, while the electronic conductivity on the cathode side remained unchanged. The combination of electrochemical characterization with stepwise regeneration processes and physical ex-situ analysis allows to draw conclusions about the impact of different components on degradation and to analyze the underlying aging mechanisms occurring in each component.