04 Fakultät Energie-, Verfahrens- und Biotechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Influence of natural convection on melting of phase change materials
    (2019) Vogel, Julian; Thess, André (Prof. Dr.)
    Latent heat storage could play an important role in bridging the gap between supply and demand of sustainable energy sources. However, the numerical models for natural convection dominated melting that are needed for storage system design are not sufficiently validated, due to a lack of suitable experiments. A novel validation experiment for the melting of a model phase change material (n-octadecane) by heating from two vertical opposite sides was developed. The phase state and the velocities in the liquid phase were measured using shadowgraphy and Particle Image Velocimetry. Interior and boundary temperatures were measured with thermocouples. The performed experiments delivered space and time-resolved data of the relevant quantities including an error analysis. Two numerical models for natural convection dominated melting were developed with the commercial fluid flow solver ANSYS Fluent: a first detailed model with variable material properties allows volume expansion of the phase change material into an air phase with the volume of fluid method. A second simplified model assumes constant material properties and models buoyancy with the Boussinesq approximation. Due to similar results, the simplified model was selected to reproduce the experiment in a 3D simulation including mechanical and thermal boundary effects. The simulated velocities were found to be higher as in the experiment, but the liquid phase fraction and temperatures, which are more relevant to the design process, agreed well. In a numerical parameter study, the simplified model was used to investigate melting in rectangular enclosures with various dimensions. The influence of natural convection on heat transfer was assessed with the introduced convective enhancement factor, which was defined as the ratio of the actual heat flux to a hypothetical heat flux by conduction. The study was extended with experimental data for three different values of driving temperature difference. Correlations for the liquid phase fraction in dimensionless form were derived to predict similar melting processes for a large parameter range. This enables the consideration of natural convection in the design of latent heat storage systems without expensive and time-consuming numerical analyses.
  • Thumbnail Image
    ItemOpen Access
    Modeling and simulation of closed low-pressure adsorbers for thermal energy storage
    (2019) Schäfer, Micha; Thess, André (Prof. Dr. rer. nat.)
    Closed low-pressure adsorption systems can be applied for thermal energy storage. Their performance is determined by the mass and heat transport processes in the adsorber. Therefore, thorough knowledge of these transport processes is required for further storage development. The present thesis contributes to this by providing detailed models of closed low-pressure adsorbers and by conducting simulations over a broad range of parameters and configurations. The focus is on adsorbers of larger scale (length L = 0.1 . . . 1 m) and on the discharging process. As the adsorption pair, binderless zeolite 13X with water is examined. The models are developed in a stepwise manner from pore to storage scale. The Finite-Difference-Method is implemented to numerically solve the models. Simulations are conducted for defined reference cases as well as over a broad range of geometric and process parameters. The reference cases are analyzed in detail to gain a better understanding of the transport processes. Furthermore, the results are analyzed with respect to two particular modeling aspects: equilibrium assumptions and rarefaction effects (e. g. slip effect). With respect to the application, the discharging performance is analyzed in terms of thermal power and a defined discharging degree. Both the adsorber and the adsorbent configurations are varied. In addition, the effect of the discharging conditions is evaluated. Finally, one exemplary charging process is examined. The detailed analysis of the reference cases reveals that the mass and heat transport and the adsorption processes are strongly coupled and can only be understood in their interaction. For onedimensional adsorber configurations, that is the mass and heat transport are in the same direction, the discharging process is generally limited by the heat transport. This leads to insufficient thermal power and unsuitable discharging durations of up to one year. In contrast, for two-dimensional adsorber configurations, that is the mass and heat transport are in perpendicular directions, the discharging process can be limited either by the mass or heat transport or by the adsorption. The limitation depends on the configuration of the adsorber and adsorbent. Moreover, the twodimensional adsorber configurations can provide sufficient thermal power. With respect to the modeling, it is found that the assumption of a uniform pressure distribution is applicable for one-dimensional adsorber configurations. In contrast, for two-dimensional configurations, no equilibrium assumptions can be applied in general. However, for powder adsorbent it is always valid to assume local adsorption equilibrium. Regarding the rarefaction effects in twodimensional adsorber configurations with honeycombs and granules, the slip effect is relevant for small channel and particle diameters (d = 1 mm). For adsorbers with powder adsorbent, the reduction of the effective heat conductivity due to the rarefaction effect becomes relevant. With respect to the application, the variation of the adsorber configuration shows that the volumetric thermal power generally decreases with increasing adsorber length. Furthermore, the power decreases with increasing width between the parallel heat exchanger plates in the adsorber. Regarding the adsorbent configuration in two-dimensional adsorber configurations, it is found that the volumetric thermal power can be optimized by variation of the channel or particle diameter. Interestingly, the optima for peak and mean power do not coincide. In addition, the discharging degree is found to strongly depend on the discharging conditions in terms of discharging temperature and volume flow of the heat transfer fluid extracting the heat from the adsorber. In general, the discharging degree decreases with increasing discharging temperature. Similarly, the discharging degree decreases with increasing volume flow of the heat transfer fluid. Finally, the analysis of an exemplary charging process revealed that the pressure in the adsorber can increase significantly (> 50%) due to the desorption.
  • Thumbnail Image
    ItemOpen Access
    Nanomechanische und nanoelektrische rasterkraftmikroskopische Analyse von Polymerelektrolytbrennstoffzellen
    (2022) Morawietz, Tobias; Friedrich, K. Andreas (Prof. Dr. rer. nat.)
    Die vorliegende Arbeit beschäftigt sich mit der Analyse von Brennstoffzellenkomponenten. Dabei wird der Fokus dieser Arbeit auf die Analyse der katalytischen Schichten mit dem Rasterkraftmikroskop gelegt. Das Rasterkraftmikroskop kann Strukturen mit wenigen Nanometern auflösen und dabei die materialspezifischen Eigenschaften aufzeichnen. Der Einsatz und die Weiterentwicklung von Rasterkraftmikroskop basierten Messmethoden für diesen Anwendungszweck wird in dieser Arbeit dargelegt. Die (Nano)-Struktur von vielen Brennstoffzellenkomponenten konnte mit den bisherigen verwendeten Methoden nicht vollständig aufgeklärt werden. Vor allem die Struktur des Ionomers innerhalb der Elektrode ist eine Unbekannte. Über das materialsensitive Rasterkraftmikroskop kann die Identifikation und Strukturanalyse der einzelnen Komponenten der katalytischen Schichten erfolgen. Die Struktur und die mechanischen und elektrischen Eigenschaften des Ionomers in der Elektrode ist für den Massentransport und die ionische/elektronische Leitfähigkeit von Bedeutung. Um die Eigenschaften des Ionomers in den Elektroden zu beschreiben, wurde die Nanostruktur des Polymerelektrolyten auf verschiedenen Größenskalen untersucht. Es werden in dieser Arbeit ultra-dünne Schichten und deren Eigenschaften, sowie die Ausbildung von Grenzschichten zur Gasphase beschrieben. Ausgegangen wird von der Struktur einzelner Ionomerbündel welche auf verschiedene Substrate abgesetzt wurden. Die Struktur dieser Primärstrukturen und die Ausbildung erster Schichten werden für Ionomere mit unterschiedlichem Äquivalentgewicht beschrieben. Es wurden eine minimale Bündelhöhe von 1,5 nm und ein lamellarer Aufbau von den Schichten gemessen. Die Bündelhöhe wird in Abhängigkeit von Temperatur und relativen Luftfeuchte dargestellt. Ultra-dünne Ionomerschichten wurden als Model für Schichten in den Elektroden hergestellt. Als Ultra-dünne Schichten werden Schichten bezeichnet, welche eine Dicke kleiner als 100 nm besitzen. Sehr dünne Schichten (< 12 nm) zeigten in den Messungen keine oder nur sehr geringe ionische Leitfähigkeit durch die Schicht. Mit katalytisch aktiven AFM Spitzen wurde eine Querleitfähigkeit dieser sehr dünnen Schichten und eine Schichtdickenabhänigkeit der Ionenleitfähigkeit nachgewiesen. Dickere Schichten über einen Mikrometer wurden über ein Tauchziehverfahren erzeugt, um die Ausbildung der kristallinen Bereiche sowie der Grenzphase zur Gasphase von Membranen mit bekannter Vorgeschichte zu beschreiben. In den Messungen zeigten sich Bereiche mit erhöhter Steifigkeit. Die Messungen der Steifigkeit konnte eine Proportionalität zur mit Dynamische Differenzkalorimetrie gemessenen Kristallinität der Ionomere gezeigt werden. Die Kristallinität nahm mit zunehmendem Äquivalentgewicht und Alter der Schichten zu. Die Untersuchungen der katalytischen Schichten mit dem Rasterkraftmikroskop zeigten einen deutlichen Kontrast in den Materialeigenschaften der katalytischen Schichten zwischen dem Ionomer und dem Katalysator. Dabei kann die Struktur sehr hoch aufgelöst vermessen werden. Je nach verwendeter Spitze liegt die laterale Auflösung zwischen 1-25 nm. Das Ionomer konnte durch höhere Adhäsion und Deformation, eine niedrigere Steifigkeit sowie keinen elektronischen Strom identifiziert werden. An Messungen der Oberfläche wurden die Bereiche, die den Katalysator umhüllen, sowie größere zusammenhängende Ionomerbereiche gemessen. An Mikrotom-Querschnitten, wurden in den katalytischen Schichten Ionomerschichten in einer Größe gefunden, die auch durch die ultra-dünnen Schichten als Modellelektroden erzeugt werden konnten. Diese Ionomerschichten umhüllen die Katalysatorpartikel. Die Dicke der Schichten lag im Bereich von ~2,5 nm - 15 nm und war abhängig von der Temperatur und relativen Luftfeuchte. Außerdem scheint die Ionomerschichtdicke von dem Herstellungsverfahren abhängig zu sein. Nach Betrieb der Brennstoffzellen wurde eine Abnahme der Schichtdicke festgestellt. Ein Zusammenhang zwischen Ausgangsschichtdicke und irreversibler Degradationsrate durch den Brennstoffzellenbetrieb wurde gezeigt. Nach Betrieb wurde über Rasterelektronenmikroskop-Messungen unterstützend eine Abnahme der Elektroden- und Membrandicke gemessen. Eine Abnahme des Gesamtionomers konnte über das Rasterkraftmikroskop, Energiedispersive Röntgenspektroskopie und Infrarotspektroskopie gezeigt werden. In der Membran bildete sich nach Betrieb ein Platinband, welches von der Position der Probe in der Membran Elektroden Einheit abhängig war. Eine Korrelation zwischen Degradationsrate und Ablagerung von Platin in der Membran konnte gezeigt werden. Die Ablagerung kann in sehr großem Ausmaß stattfinden, dass Kurzschlüsse durch die Membran festgestellt werden konnten, welche mit dem Rasterkraftmikroskop nachgewiesen werden konnten. In der Bildanalyse Software GeoDict wurden Modelle von den Elektroden nach den gemessenen Daten erstellt und verschiedene Faktoren, wie Ionomerschichtdicke, Katalysatordurchmesser und Bedeckung des Katalysators mit Ionomer auf die resultierende ionische und elektronische Leitfähigkeit untersucht. Zusammenfassend trägt diese Arbeit zur Aufklärung der Struktur und Eigenschaften von Polymerelektrolytbrennstoffzellen bei und zeigt Degradationsmechanismen auf.