04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
17 results
Search Results
Item Open Access Application of ion chromatography for the reliable quantification of ammonium in electrochemical ammonia synthesis experiments : a practical guide(2023) Bragulla, Sebastian C. H.; Lorenz, Julian; Harms, Corinna; Wark, Michael; Friedrich, K. AndreasAssessing novel electrocatalysts for the electrochemical ammonia synthesis (EAS) requires reliable quantitative trace analysis of electrochemically produced ammonia to infer activity and selectivity. This study concerns the development of an ion chromatography (IC) method for quantitative trace analysis of ammonium in 0.1 M sulfuric acid electrolyte, which is applied to EAS gas-diffusion electrode (GDE) experiments with commercial chromium nitride as electrocatalyst. The developed IC method is highly sensitive, versatile, and reliable, achieving a limit of quantification (LOQ) of 6 μg l-1 (6 ppbmol) ammonium. The impacts of the sample matrix, dilution, and neutralization, as well as contamination, on the quantitative analysis by IC are analyzed. Experimental constraints result in an effective LOQ including dilution of 60 μg l-1 for the determination of ammonium in 0.1 M sulfuric acid electrolyte, owing to necessary sample dilution. The practical guide presented herein is intended to be very relevant for the field of EAS as a guideline and applicable to a broad range of catalyst systems and ion chromatography devices.Item Open Access Multistep reactions of molten nitrate salts and gas atmospheres(2024) Steinbrecher, Julian; Thess, André (Prof. Dr.)Dissertation zur Untersuchung der Stabilität von Nitratsalzschmelzen unter verschiedenen atmosphärischen Bedingungen und Temperaturen.Item Open Access Modeling and simulation of closed low-pressure adsorbers for thermal energy storage(2019) Schäfer, Micha; Thess, André (Prof. Dr. rer. nat.)Closed low-pressure adsorption systems can be applied for thermal energy storage. Their performance is determined by the mass and heat transport processes in the adsorber. Therefore, thorough knowledge of these transport processes is required for further storage development. The present thesis contributes to this by providing detailed models of closed low-pressure adsorbers and by conducting simulations over a broad range of parameters and configurations. The focus is on adsorbers of larger scale (length L = 0.1 . . . 1 m) and on the discharging process. As the adsorption pair, binderless zeolite 13X with water is examined. The models are developed in a stepwise manner from pore to storage scale. The Finite-Difference-Method is implemented to numerically solve the models. Simulations are conducted for defined reference cases as well as over a broad range of geometric and process parameters. The reference cases are analyzed in detail to gain a better understanding of the transport processes. Furthermore, the results are analyzed with respect to two particular modeling aspects: equilibrium assumptions and rarefaction effects (e. g. slip effect). With respect to the application, the discharging performance is analyzed in terms of thermal power and a defined discharging degree. Both the adsorber and the adsorbent configurations are varied. In addition, the effect of the discharging conditions is evaluated. Finally, one exemplary charging process is examined. The detailed analysis of the reference cases reveals that the mass and heat transport and the adsorption processes are strongly coupled and can only be understood in their interaction. For onedimensional adsorber configurations, that is the mass and heat transport are in the same direction, the discharging process is generally limited by the heat transport. This leads to insufficient thermal power and unsuitable discharging durations of up to one year. In contrast, for two-dimensional adsorber configurations, that is the mass and heat transport are in perpendicular directions, the discharging process can be limited either by the mass or heat transport or by the adsorption. The limitation depends on the configuration of the adsorber and adsorbent. Moreover, the twodimensional adsorber configurations can provide sufficient thermal power. With respect to the modeling, it is found that the assumption of a uniform pressure distribution is applicable for one-dimensional adsorber configurations. In contrast, for two-dimensional configurations, no equilibrium assumptions can be applied in general. However, for powder adsorbent it is always valid to assume local adsorption equilibrium. Regarding the rarefaction effects in twodimensional adsorber configurations with honeycombs and granules, the slip effect is relevant for small channel and particle diameters (d = 1 mm). For adsorbers with powder adsorbent, the reduction of the effective heat conductivity due to the rarefaction effect becomes relevant. With respect to the application, the variation of the adsorber configuration shows that the volumetric thermal power generally decreases with increasing adsorber length. Furthermore, the power decreases with increasing width between the parallel heat exchanger plates in the adsorber. Regarding the adsorbent configuration in two-dimensional adsorber configurations, it is found that the volumetric thermal power can be optimized by variation of the channel or particle diameter. Interestingly, the optima for peak and mean power do not coincide. In addition, the discharging degree is found to strongly depend on the discharging conditions in terms of discharging temperature and volume flow of the heat transfer fluid extracting the heat from the adsorber. In general, the discharging degree decreases with increasing discharging temperature. Similarly, the discharging degree decreases with increasing volume flow of the heat transfer fluid. Finally, the analysis of an exemplary charging process revealed that the pressure in the adsorber can increase significantly (> 50%) due to the desorption.Item Open Access PEM single cells under differential conditions : full factorial parameterization of the ORR and HOR kinetics and loss analysis(2022) Gerling, Christophe; Hanauer, Matthias; Berner, Ulrich; Friedrich, K. AndreasThe anode and cathode kinetics are parameterized based on differential cell measurements. Systematic parameter variations are evaluated to disentangle the dependencies of the electrochemical impedance spectroscopy (EIS) signatures in H2/H2 mode. We introduce a new CO recovery protocol for both electrodes that enables to accurately characterize the hydrogen oxidation reaction (HOR) kinetics. Then, we demonstrate that a compact Tafel kinetics law captures the oxygen reduction reaction (ORR) kinetics for a full factorial grid of conditions, covering a wide range of relative humidities (rH), temperatures, oxygen partial pressures and current densities. This yields the characteristic activation energy and effective reaction order, and we reconcile models that make different assumptions regarding the rH dependency. Moreover, we analyze O2 transport contributions by steady-state and transient limiting current techniques and heliox measurements. Although the rising uncertainty of loss corrections at high current densities makes it impossible to unambiguously identify an intrinsic potential-dependent change of the Tafel slope, our data support that such effect needs not be considered for steady-state cathodic half-cell potentials above 0.8 V.Item Open Access High-resolution analysis of ionomer loss in catalytic layers after operation(2018) Morawietz, T.; Handl, M.; Oldani, C.; Gazdzicki, P.; Hunger, Jürgen; Wilhelm, Florian; Blake, John; Friedrich, K. Andreas; Hiesgen, R.The function of catalytic layers in fuel cells and electrolyzers depends on the properties of the ionically conductive phase, which are most commonly perfluorinated ionomers based on Nafion and Aquivion. An analysis by atomic force microscopy reveals that the ultrathin ionomer films around Pt/C agglomerates have a thickness distribution ranging from 3.5 nm to 20 nm. Their conductivity and gas permeation properties determine the fuel cell performance to a large extend. For electrodes in Aquivion-based membrane-electrode-assemblies operation-induced structure changes were investigated by means of material- and conductivity-sensitive atomic force microscopy, infrared spectroscopy and electron-dispersive X-ray analysis. The observed thinning of the ultrathin ionomer films was mainly caused by polymer degradation deduced from reduced swelling after long-time operation and a significant loss of ionomer with operation time detected by infrared spectroscopy. From the linear thickness increase of the ultrathin films with rising humidity, a mainly layered structure of the ionomer was deduced. An influence of thickness of such ultrathin ionomer films on fuel cell lifetime was found by analysis of differently prepared membrane-electrode-assemblies, where a linear increase of irreversible degradation rate with ionomer film thickness in the electrodes of unused membrane-electrode-assemblies was found.Item Open Access A new approach to modeling solid oxide cell reactors with multiple stacks for process system simulation(2022) Tomberg, M.; Heddrich, M. P.; Sedeqi, F.; Ullmer, D.; Ansar, S. A.; Friedrich, K. AndreasReactors with solid oxide cells (SOC) are highly efficient electrochemical energy converters, which can be used for electricity generation and production of chemical feedstocks. The technology is in an upscaling phase. Thereby demanding development of strategies for robust and efficient operation or large SOC reactors and plants. The present state of technology requires reactors with multiple stacks to achieve the appropriate power. This study aims to establish and apply a simulation framework to investigate process systems containing SOC reactors with multiple stacks. Focusing especially on the operating behavior of SOC reactors under transient conditions, by observing the performance of all cells in the reactor. For this purpose, a simulation model of the entire SOC reactor consisting of multiple stacks, pipes, manifolds, and thermal insulation was developed. After validation on stack and reactor level, the model was used to investigate the fundamental behavior of the SOC reactors and the individual stacks in various operation modes. Additionally, the influences of local degradation and reactor scaling on the performance were examined. The results show that detailed investigation of the reactors is necessary to ensure operability and to increase efficiency and robustness. Furthermore, the computing performance is sufficient to develop and validate system controls.Item Open Access Advanced impedance analysis for performance degradation during low-temperature CO2 electroreduction(2024) Chen, Qinhao; Kube, Alexander; Kopljar, Dennis; Friedrich, Kaspar AndreasElectrochemical impedance spectroscopy (EIS) is a powerful tool commonly used to study electrochemical systems. Nevertheless, its application in CO2 electroreduction has been so far limited due to its complex reaction mechanism and environment. Although initial findings have demonstrated the viability of applying EIS analysis in CO2 electrolyzers, the assignment of individual processes in the impedance spectra remains ambiguous. Therefore, a more detailed investigation, especially focused on its application in evaluating degradation mechanisms, is essential. In this study, a stable gas diffusion electrode (GDE) system was developed for a comprehensive EIS and distribution of relaxation time (DRT) evaluation to assess key degradation mechanisms under accelerated stress conditions such as high current density and low operating temperature. Validated by post-mortem analysis and complementary methods, we demonstrate the viability of this approach for operando monitoring of CO2 electroreduction by assigning individual mechanistic processes in the GDE and linking them to performance degradation over time.Item Open Access Chemical equilibria and intrinsic kinetics of reactions in molten nitrate salt(2021) Sötz, Veronika Anna; Thess, André (Prof. Dr.)Die Nitratsalzmischung „Solarsalz“ wird als Wärmespeichermedium in großtechnischen Speichersystemen eingesetzt, die wesentliche Bestandteile von konzentrierenden Solarkraftwerken sind, um die Stromproduktion der Nachfrage anzupassen. Die Speichertemperatur beträgt in bestehenden Systemen maximal 565 °C, soll aber zukünftig ansteigen, um den Wirkungsgrad bei der Verstromung und die Speicherkapazität zu erhöhen. Chemische Reaktionen in Flüssigsalz werden jedoch durch steigende Temperaturen beschleunigt und verstärkt, was zu thermischer Instabilität des Speichermaterials führt und wodurch vermehrt Zersetzungsprodukte einschließlich korrosiver Ionen und toxischer Gase entstehen. Ein grundlegendes Verständnis des Zersetzungsprozesses ist notwendig, um die Materialien bei erhöhten Temperaturen stabil zu halten. In dieser Dissertation sind Reaktionen, die relevanten Zersetzungsprodukte bilden, experimentell untersucht und mathematisch beschrieben. Die Reaktion von Nitrationen zu Nitritionen stellt den ersten Schritt des Zersetzungsprozesses dar und das zugehörige chemische Gleichgewicht ist in zwei Temperaturbereichen (450-550 und 560-630 °C) bestimmt. Die intrinsische Kinetik der Nitritbildung ist bis 550 °C durch thermogravimetrische Analyse untersucht. Das differentielle Zeitgesetz enthält die Kinetik der Hin- als auch der Rückreaktion. Die Zersetzung von Nitritionen weiter zu Oxidionen wird als zweiter Schritt betrachtet. Erstmalig zeigt diese Arbeit Experimente, die ein chemisches Gleichgewicht mit Beteiligung von Oxidionen in Solarsalz belegen. Der Zusatz nitroser Gase zum Spülgas (synthetische Luft) stabilisiert den Oxidgehalt, was bei 600 und 620 °C nachgewiesen ist. Diese Ergebnisse sind besonders wertvoll, da Oxidionen Stahlkorrosion in Solarsalz verstärken. Die intrinsische Kinetik der Oxidbildung ist in Luftatmosphäre bis 630 °C untersucht und mathematisch ausgedrückt. Die Kinetikparameter sind durch Fit der experimentellen Ergebnisse ermittelt. Insgesamt bilden die Zersetzungsreaktionen ein konsistentes Netzwerk, das durch chemische Gleichgewichte und die intrinsische Kinetik zweier Reaktionen beschrieben ist. Die Ergebnisse tragen zur Entwicklung der Flüssigsalz-Wärmespeichertechnologie durch Vorhersage der Solarsalzstabilität bei bestehenden und höheren Betriebstemperaturen bei.Item Open Access Nanomechanische und nanoelektrische rasterkraftmikroskopische Analyse von Polymerelektrolytbrennstoffzellen(2022) Morawietz, Tobias; Friedrich, K. Andreas (Prof. Dr. rer. nat.)Die vorliegende Arbeit beschäftigt sich mit der Analyse von Brennstoffzellenkomponenten. Dabei wird der Fokus dieser Arbeit auf die Analyse der katalytischen Schichten mit dem Rasterkraftmikroskop gelegt. Das Rasterkraftmikroskop kann Strukturen mit wenigen Nanometern auflösen und dabei die materialspezifischen Eigenschaften aufzeichnen. Der Einsatz und die Weiterentwicklung von Rasterkraftmikroskop basierten Messmethoden für diesen Anwendungszweck wird in dieser Arbeit dargelegt. Die (Nano)-Struktur von vielen Brennstoffzellenkomponenten konnte mit den bisherigen verwendeten Methoden nicht vollständig aufgeklärt werden. Vor allem die Struktur des Ionomers innerhalb der Elektrode ist eine Unbekannte. Über das materialsensitive Rasterkraftmikroskop kann die Identifikation und Strukturanalyse der einzelnen Komponenten der katalytischen Schichten erfolgen. Die Struktur und die mechanischen und elektrischen Eigenschaften des Ionomers in der Elektrode ist für den Massentransport und die ionische/elektronische Leitfähigkeit von Bedeutung. Um die Eigenschaften des Ionomers in den Elektroden zu beschreiben, wurde die Nanostruktur des Polymerelektrolyten auf verschiedenen Größenskalen untersucht. Es werden in dieser Arbeit ultra-dünne Schichten und deren Eigenschaften, sowie die Ausbildung von Grenzschichten zur Gasphase beschrieben. Ausgegangen wird von der Struktur einzelner Ionomerbündel welche auf verschiedene Substrate abgesetzt wurden. Die Struktur dieser Primärstrukturen und die Ausbildung erster Schichten werden für Ionomere mit unterschiedlichem Äquivalentgewicht beschrieben. Es wurden eine minimale Bündelhöhe von 1,5 nm und ein lamellarer Aufbau von den Schichten gemessen. Die Bündelhöhe wird in Abhängigkeit von Temperatur und relativen Luftfeuchte dargestellt. Ultra-dünne Ionomerschichten wurden als Model für Schichten in den Elektroden hergestellt. Als Ultra-dünne Schichten werden Schichten bezeichnet, welche eine Dicke kleiner als 100 nm besitzen. Sehr dünne Schichten (< 12 nm) zeigten in den Messungen keine oder nur sehr geringe ionische Leitfähigkeit durch die Schicht. Mit katalytisch aktiven AFM Spitzen wurde eine Querleitfähigkeit dieser sehr dünnen Schichten und eine Schichtdickenabhänigkeit der Ionenleitfähigkeit nachgewiesen. Dickere Schichten über einen Mikrometer wurden über ein Tauchziehverfahren erzeugt, um die Ausbildung der kristallinen Bereiche sowie der Grenzphase zur Gasphase von Membranen mit bekannter Vorgeschichte zu beschreiben. In den Messungen zeigten sich Bereiche mit erhöhter Steifigkeit. Die Messungen der Steifigkeit konnte eine Proportionalität zur mit Dynamische Differenzkalorimetrie gemessenen Kristallinität der Ionomere gezeigt werden. Die Kristallinität nahm mit zunehmendem Äquivalentgewicht und Alter der Schichten zu. Die Untersuchungen der katalytischen Schichten mit dem Rasterkraftmikroskop zeigten einen deutlichen Kontrast in den Materialeigenschaften der katalytischen Schichten zwischen dem Ionomer und dem Katalysator. Dabei kann die Struktur sehr hoch aufgelöst vermessen werden. Je nach verwendeter Spitze liegt die laterale Auflösung zwischen 1-25 nm. Das Ionomer konnte durch höhere Adhäsion und Deformation, eine niedrigere Steifigkeit sowie keinen elektronischen Strom identifiziert werden. An Messungen der Oberfläche wurden die Bereiche, die den Katalysator umhüllen, sowie größere zusammenhängende Ionomerbereiche gemessen. An Mikrotom-Querschnitten, wurden in den katalytischen Schichten Ionomerschichten in einer Größe gefunden, die auch durch die ultra-dünnen Schichten als Modellelektroden erzeugt werden konnten. Diese Ionomerschichten umhüllen die Katalysatorpartikel. Die Dicke der Schichten lag im Bereich von ~2,5 nm - 15 nm und war abhängig von der Temperatur und relativen Luftfeuchte. Außerdem scheint die Ionomerschichtdicke von dem Herstellungsverfahren abhängig zu sein. Nach Betrieb der Brennstoffzellen wurde eine Abnahme der Schichtdicke festgestellt. Ein Zusammenhang zwischen Ausgangsschichtdicke und irreversibler Degradationsrate durch den Brennstoffzellenbetrieb wurde gezeigt. Nach Betrieb wurde über Rasterelektronenmikroskop-Messungen unterstützend eine Abnahme der Elektroden- und Membrandicke gemessen. Eine Abnahme des Gesamtionomers konnte über das Rasterkraftmikroskop, Energiedispersive Röntgenspektroskopie und Infrarotspektroskopie gezeigt werden. In der Membran bildete sich nach Betrieb ein Platinband, welches von der Position der Probe in der Membran Elektroden Einheit abhängig war. Eine Korrelation zwischen Degradationsrate und Ablagerung von Platin in der Membran konnte gezeigt werden. Die Ablagerung kann in sehr großem Ausmaß stattfinden, dass Kurzschlüsse durch die Membran festgestellt werden konnten, welche mit dem Rasterkraftmikroskop nachgewiesen werden konnten. In der Bildanalyse Software GeoDict wurden Modelle von den Elektroden nach den gemessenen Daten erstellt und verschiedene Faktoren, wie Ionomerschichtdicke, Katalysatordurchmesser und Bedeckung des Katalysators mit Ionomer auf die resultierende ionische und elektronische Leitfähigkeit untersucht. Zusammenfassend trägt diese Arbeit zur Aufklärung der Struktur und Eigenschaften von Polymerelektrolytbrennstoffzellen bei und zeigt Degradationsmechanismen auf.Item Open Access Degradation study on solid oxide steam electrolysis(2020) Hörlein, Michael Philipp; Friedrich, K. Andreas (Prof. Dr.)Untersuchung der Degradation von Festoxidzellen im Elektrolysebetrieb von Wasserdampf anhand von Variationen der Betriebsbedingungen.