04 Fakultät Energie-, Verfahrens- und Biotechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Design of fiber-composite/metal-hybrid structures made by multi-stage coreless filament winding
    (2022) Mindermann, Pascal; Müllner, Ralf; Dieringer, Erik; Ocker, Christof; Klink, René; Merkel, Markus; Gresser, Götz T.
    The methods presented in this study assist in fabricating load-bearing structures with high mass-specific mechanical performance at various scales. Possible applications include primary and secondary structures in engineering, architecture, automotive, or aerospace industries.Additive manufacturing processes, such as coreless filament winding with fiber composites or laser powder bed fusion with metals, can produce lightweight structures while exhibiting process-specific characteristics. Those features must be accounted for to successfully combine multiple processes and materials. This hybrid approach can merge the different benefits to realize mass savings in load-bearing structures with high mass-specific stiffnesses, strict geometrical tolerances, and machinability. In this study, a digital tool for coreless filament winding was developed to support all project phases by natively capturing the process-specific characteristics. As a demonstration, an aluminum base plate was stiffened by a coreless wound fiber-composite structure, which was attached by additively manufactured metallic winding pins. The geometrical deviations and surface roughness of the pins were investigated to describe the interface. The concept of multi-stage winding was introduced to reduce fiber–fiber interaction. The demonstration example exhibited an increase in mass-specific component stiffness by a factor of 2.5 with only 1/5 of the mass of a state-of-the-art reference. The hybrid design approach holds great potential to increase performance if process-specific features, interfaces, material interaction, and processes interdependencies are aligned during the digitized design phase.
  • Thumbnail Image
    ItemOpen Access
    Increased resilience for manufacturing systems in supply networks through data-based turbulence mitigation
    (2021) Bauer, Dennis; Böhm, Markus; Bauernhansl, Thomas; Sauer, Alexander
    In manufacturing systems, a state of high resilience is always desirable. However, internal and external complexity has great influence on these systems. An approach is to increase manufacturing robustness and responsiveness-and thus resilience-by manufacturing control. In order to execute an effective control method, it is necessary to provide sufficient information of high value in terms of data format, quality and time of availability. Nowadays, raw data is available in large quantities. An obstacle to manufacturing control is the short-term handling of events induced by customers and suppliers. These events cause different kinds of turbulence in manufacturing systems. If such turbulences could be evaluated in advance, based on data processing, they could serve as aggregated input data for a control system. This paper presents an approach how to combine turbulence evaluation and the derivation of measures into a learning system for turbulence mitigation. Integrated in manufacturing control, turbulence mitigation increases manufacturing resilience and strengthens the supply network’s resilience.
  • Thumbnail Image
    ItemOpen Access
    A conceptual framework for biointelligent production : calling for systemic life cycle thinking in cellular units
    (2021) Miehe, Robert; Buckreus, Lorena; Kiemel, Steffen; Sauer, Alexander; Bauernhansl, Thomas
    A sustainable design of production systems is essential for the future viability of the economy. In this context, biointelligent production systems (BIS) are currently considered one of the most innovative paths for a comprehensive reorientation of existing industrial patterns. BIS are intended to enable a highly localized on-demand production of personalized goods via stand-alone non-expert systems. Recent studies in this field have primarily adopted a technical perspective; this paper addresses the larger picture by discussing the essential issues of integrated production system design. Following a normative logic, we introduce the basic principle of systemic life cycle thinking in cellular units as the foundation of a management framework for BIS. Thereupon, we develop a coherent theoretical model of a future decentralized production system and derive perspectives for future research and development in key areas of management.