04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
3 results
Search Results
Item Open Access Coolability of volumetrically heated particle beds(Stuttgart : Institut für Kernenergetik und Energiesysteme, 2017) Rashid, Muhammad; Laurien, Eckart (Prof. Dr.-Ing. habil.)Item Open Access Thermo-hydraulic analysis of wall bounded flows with supercritical carbon dioxide using direct numerical simulation(Stuttgart : Institute of Nuclear Technology and Energy Systems, 2018) Pandey, Sandeep; Laurien, Eckart (Prof. Dr.-Ing. habil.)The power cycle based on supercritical carbon dioxide technologies promises a higher thermal efficiency and a compact plant layout. However, heat transfer and hydraulic characteristics are peculiar in the near-critical region due to the sharp variation of thermophysical properties in a narrow temperature and pressure range. Therefore, this works presents the results of several direct numerical simulations (DNS) of turbulent wall-bounded flow at supercritical pressure. The spatially developing pipe flows are simulated with the low Mach number approximation to characterize the cooling process of supercritical carbon dioxide. The upward and downward flow of carbon dioxide in vertical orientation has been considered. Heat transfer deterioration followed by recovery is observed in the downward flow while enhancement occurs in the upward flow as compared to forced convection. During the heat transfer deterioration, sweep and ejection events are decreased greatly, triggering the reduction in turbulence. The recovery in turbulence is brought by the Q1 and Q3 (also known as outward and inward interaction) events, contrary to the conventional belief about turbulence generation. The turbulence anisotropy of the Reynolds stress tensor showed that the turbulence structure becomes rod-like during the deteriorated heat transfer regime in the downward flow and disc-like for the upward flow. In addition to low Mach number DNS, a framework for using fully-compressible discontinuous Galerkin spectral element method for DNS of supercritical carbon dioxide is presented. A turbulent channel flow is considered to demonstrate the ability of this framework and to observe the effects of Mach number in the supercritical fluid regime. The increase in the Mach number increases the turbulence in the flow for a given Reynolds number. Finally, a computationally light data-driven approach for heat transfer and hydraulic characteristics modeling of supercritical fluids is presented based on the deep neural network. This innovative approach has shown remarkable prediction capabilities.Item Open Access Experimentelle und numerische Untersuchung von Strömungsvermischungsvorgängen in einem Rohrleitungs-T-Stück(Stuttgart : Institut für Kernenergetik und Energiesysteme, 2021) Isaev, Alexander; Laurien, Eckart (Prof. Dr.-Ing.)Die vorliegende Forschungsarbeit befasst sich im Rahmen der Reaktorsicherheitsforschung mit grundlegenden experimentellen und numerischen Untersuchungen zur Ausbildung von Strömungsformen im Vermischungsbereich eines Rohrleitungs-T-Stücks. Der Hintergrund der Arbeit ist die reaktorsicherheitstechnische Fragestellung nach den Ursachen für das Auftreten von Ermüdungsphänomenen in Rohrleitungssystemen von Kernkraftwerken, die zu Fehlfunktionen oder Schädigungen in den Komponenten von Kühlkreisläufen führen können. Strömungsformen, die sich unter dem Einfluss von Turbulenz und Schwerkraft aufgrund hoher Temperaturdifferenzen ausbilden, können für die strömungsinduzierte Schädigung des Rohrleitungsmaterials verantwortlich sein. Stellvertretend für eine Strömung mit thermischer Vermischung wird die Strömung mit und ohne Dichteschichtung nahe einer generischen Einspeisestelle (horizontales T-Stück) in dem isotherm betriebenen MFI (engl. Mixed-Fluid-Interaction)-Teststand experimentell untersucht. Im MFI-Teststand können entsprechende Dichteunterschiede in den beiden Zuflüssen des T-Stücks mithilfe einer aufbereiteten wässrigen Salz- oder Zuckerlösung höherer Dichte eingestellt werden. Hierzu wird im Rahmen dieser Arbeit eine Möglichkeit zur Umrechnung der relevanten physikalischen Strömungsgrößen demonstriert, die auf der Verwendung von drei bzw. zwei dimensionslosen Kennzahlen basiert. Damit lassen sich Beobachtungen und Erkenntnisse der Strömungsvermischungscharakteristiken aus einer isothermen Vermischung auf einen thermischen Strömungsvermischungsvorgang übertragen. Dieser Sachverhalt ermöglicht es mithilfe von isothermen Experimenten die hydraulischen Randbedingungen für die thermischen experimentellen Untersuchungen zu identifizieren, bei denen das Risiko für eine lokale thermische Materialermüdung erhöht ist. Damit lassen sich Zeit und Kosten für die Versuchsplanung und Versuchsdurchführung für thermischer Experimente senken. Des Weiteren kompensiert die Visualisierung der thermischen Vermischungsvorgänge mithilfe der isothermen Experimente das Defizit der optischen Zugänglichkeit in der Nutzung von thermisch betriebenen Testständen. Umfangreiche qualitative experimentelle Untersuchungen zeigen auf, unter welchen Bedingungen sich eine Strömungsform mit stromauf- und abwärts gerichteter Dichteschichtung ausbildet und welche Stabilitätseigenschaften diese gegenüber der Veränderung der Randbedingungen hat. Des Weiteren erfolgen quantitative und qualitative Untersuchungen der Strahlausbildung sowie deren Einfluss auf das stromab- und stromaufgerichtet Strömungsschichtungsverhalten mittels optischer Mess- und Visualisierungstechnik. Der zusätzliche Einsatz der Gittersensormesstechnik liefert zudem zeitlich hochaufgelöste Strömungsquerschnittsstatistiken. Diese Daten ermöglichen es Strömungscharakteristiken im Hinblick auf das Risiko einer strömungsinduzierten thermischen Ermüdung des Rohrleitungsmaterials in einer ähnlichen thermischen Vermischung zu analysieren. Die beobachteten Strömungsformen werden in dimensionslosen Strömungsformkarten zusammengefasst. Mit den durchgeführten experimentellen Untersuchungen wird auf der einen Seite ein Beitrag zur Vorhersage von Strömungsformen geleistet, auf der anderen Seite fließen die experimentellen Daten in die Validierung, der im Rahmen der Arbeit durchgeführten Strömungssimulationen ein. Parallel zur experimentellen Untersuchung wird die Strömung und ihre Stabilität mit dem CFD-Simulationsprogramm OpenFOAM unter Anwendung der Grobstruktursimulation (engl. Large-Eddy Simulations-methode (LES)) berechnet. Mittels LES-Simulationen lässt sich die Analogie zwischen isothermen und thermischen Vermischungsvorgängen überprüfen und damit die Übertragbarkeit der isothermen experimentellen Ergebnisse auf thermische Versuche belegen. Die zusätzliche Identifizierung der Ursache für das Auftreten dominanter Mischungsskalarschwankungen leistet einen Beitrag zum Verständnis von turbulenten Strömungsvorgängen mit dem Risikopotential für eine thermische Ermüdung des Rohrleitungsmaterials in der Nähe einer Einspeisestelle. Die numerische Methode zur Nachbildung von thermischen Vermischungsvorgängen wird zudem mit Versuchsergebnissen, die mit der FSI (Fluid-Structure-Interaction)- Versuchsanlage der/des MPA/IKE für kraftwerksnahe Druck- und Temperaturbedingungen erhalten wurden, abgesichert.