04 Fakultät Energie-, Verfahrens- und Biotechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5

Browse

Search Results

Now showing 1 - 10 of 10
  • Thumbnail Image
    ItemOpen Access
    Increasing low-temperature toughness of 09Mn2Si steel through lamellar structuring by helical rolling
    (2021) Panin, Sergey; Vlasov, Ilya; Moiseenko, Dmitry; Maksimov, Pavel; Maruschak, Pavlo; Yakovlev, Alexander; Gomorova, Julia; Mishin, Ivan; Schmauder, Siegfried
    The aim of the paper was to investigate the helical rolling parameters (a number of passes) for the microstructural modification and the low-temperature impact toughness improvement of the 09Mn2Si High Strength Low-Alloyed (HSLA) steel. In order to achieve this purpose, work spent to crack initiation and propagation was analyzed and compared with patterns of fracture surfaces. The microstructure and impact toughness values were presented in the temperature range from +20 to -70°C. Also, the fracture mechanisms in individual regions on the fracture surfaces were discussed. In addition, a methodology for computer simulation of the process was developed and implemented within the framework of the excitable cellular automata method and its integration with the kinetic theory of fracture. Finally, a theoretical analysis of the effect of grain shapes and orientations on the strain response patterns of a certain meso-volume simulating the material after the helical rolling was carried out.
  • Thumbnail Image
    ItemOpen Access
    A numerical method for the generation of hierarchical Poisson Voronoi microstructures applied in micromechanical finite element simulations : part I: method
    (2020) Schneider, Y.; Weber, U.; Wasserbäch, W.; Zielke, R.; Schmauder, S.; Tillmann, W.
    Poisson Voronoi (PV) tessellations as artificial microstructures are widely used in investigations of material deformation behaviors. However, a PV structure usually describes a relative homogeneous field. This work presents a simple numerical method for generating 2D/3D artificial microstructures based on hierarchical PV tessellations. If grains/particles of a phase cover a large size span, the concept of “artificial phases” can be used to create a more realistic size distribution. From case to case, detailed microstructural features cannot be directly achieved by commercial or free softwares, but they are necessary for a deep or thorough study of the material deformation behavior. PV tessellations created in our process can fulfill individual requirements from material designs. Another reason to use PV tessellations is due to the limited experimental data. Concerning the application of PV microstructures, four examples are given. The FE models and results will be presented in consecutive works, i.e. “part II: applications”.
  • Thumbnail Image
    ItemOpen Access
    A physically based material model for the simulation of friction stir welding
    (2020) Panzer, Florian; Shishova, Elizaveta; Werz, Martin; Weihe, Stefan; Eberhard, Peter; Schmauder, Siegfried
    A physically based material model, taking into account the interdependence of material microstructure and yield strength, is presented for an Al 5182 series aluminum alloy for the simulation of friction stir welding using continuum mechanics approaches. A microstructure evolution equation considering dislocation density and grain size is used in conjunction with a description of yield stress. In order to fit experimental stress-strain curves, obtained from compression tests at various strain rates and temperatures, phenomenological relationships are developed for some of the model parameters. The material model is implemented in smoothed particle hydrodynamic research code as well as in the commercial finite element code Abaqus. Simulations for various strain rates and temperatures were performed and compared with experimental results as well as between the two discretization methods in order to verify the material model and the implementation. Simulations provide not only an accurate approximation of stress based on temperature, strain rate, and strain but also an improved insight into the microstructural evolution of the material.
  • Thumbnail Image
    ItemOpen Access
    Thermal fracture of functionally graded coatings with systems of cracks : application of a model based on the rule of mixtures
    (2023) Petrova, Vera; Schmauder, Siegfried; Georgiadis, Alexandros
    This paper is devoted to the problem of the thermal fracture of a functionally graded coating (FGC) on a homogeneous substrate (H), i.e., FGC/H structures. The FGC/H structure was subjected to thermo-mechanical loadings. Systems of interacting cracks were located in the FGC. Typical cracks in such structures include edge cracks, internal cracks, and edge/internal cracks. The material properties and fracture toughness of the FGC were modeled by formulas based on the rule of mixtures. The FGC comprised two constituents, a ceramic on the top and a metal as a homogeneous substrate, with their volume fractions determined by a power law function with the power coefficient λ as the gradation parameter for the FGC. For this study, the method of singular integral equations was used, and the integral equations were solved numerically by the mechanical quadrature method based on the Chebyshev polynomials. Attention was mainly paid to the determination of critical loads and energy release rates for the systems of interacting cracks in the FGCs in order to find ways to increase the fracture resistance of FGC/H structures. As an illustrative example, a system of three edge cracks in the FGC was considered. The crack shielding effect was demonstrated for this system of cracks. Additionally, it was shown that the gradation parameter λ had a great effect on the fracture characteristics. Thus, the proposed model provided a sound basis for the optimization of FGCs in order to improve the fracture resistance of FGC/H structures.
  • Thumbnail Image
    ItemOpen Access
    Fatigue improvement of AlSi10Mg fabricated by laser-based powder bed fusion through heat treatment
    (2021) Sajadi, Felix; Tiemann, Jan-Marc; Bandari, Nooshin; Cheloee Darabi, Ali; Mola, Javad; Schmauder, Siegfried
    This study aimed to identify an optimal heat-treatment parameter set for an additively manufactured AlSi10Mg alloy in terms of increasing the hardness and eliminating the anisotropic microstructural characteristics of the alloy in as-built condition. Furthermore, the influence of these optimized parameters on the fatigue properties of the alloy was investigated. In this respect, microstructural characteristics of an AlSi10Mg alloy manufactured by laser-based powder bed fusion in non-heat-treated and heat-treated conditions were investigated. Their static and dynamic mechanical properties were evaluated, and fatigue behavior was explained by a detailed examination of fracture surfaces. The majority of the microstructure in the non-heat-treated condition was composed of columnar grains oriented parallel to the build direction. Further analysis revealed a high fraction of pro-eutectic α-Al. Through heat treatment, the alloy was successfully brought to its peak-hardened condition, while eliminating the anisotropic microstructural features. Yield strength and ductility increased simultaneously after heat treatment, which is due to the relief of residual stresses, preservation of refined grains, and introduction of precipitation strengthening. The fatigue strength, calculated at 107 cycles, improved as well after heat treatment, and finally, detailed fractography revealed that a more ductile fracture mechanism occurred in the heat-treated condition compared to the non-heat-treated condition.
  • Thumbnail Image
    ItemOpen Access
    Investigation of auxetic structural deformation behavior of PBAT polymers using process and finite element simulation
    (2023) Schneider, Yanling; Guski, Vinzenz; Sahin, Ahmet O.; Schmauder, Siegfried; Kadkhodapour, Javad; Hufert, Jonas; Grebhardt, Axel; Bonten, Christian
    The current work investigates the auxetic tensile deformation behavior of the inversehoneycomb structure with 5 × 5 cells made of biodegradable poly(butylene adipate-coterephthalate) (PBAT). Fused deposition modeling, an additive manufacturing method, was used to produce such specimens. Residual stress (RS) and warpage, more or less, always exist in such specimens due to their layer-by-layer fabrication, i.e., repeated heating and cooling. The RS influences the auxetic deformation behavior, but its measurement is challenging due to its very fine structure. Instead, the finite-element (FE)-based process simulation realized using an ABAQUS plug-in numerically predicts the RS and warpage. The predicted warpage shows a negligibly slight deviation compared to the design topology. This process simulation also provides the temperature evolution of a small-volume material, revealing the effects of local cyclic heating and cooling. The achieved RS serves as the initial condition for the FE model used to investigate the auxetic tensile behavior. With the outcomes from FE calculation without consideration of the RS, the effect of the RS on the deformation behavior is discussed for the global force–displacement curve, the structural Poisson’s ratio evolution, the deformed structural status, the stress distribution, and the evolution, where the first three and the warpage are also compared with the experimental results. Furthermore, the FE simulation can easily provide the global stress–strain flow curve with the total stress calculated from the elemental stresses.
  • Thumbnail Image
    ItemOpen Access
    FEM simulations of fatigue crack initiation in the oligocrystalline microstructure of stents
    (2023) Lasko, Galina; Schmauder, Siegfried; Yang, Yitong; Weiss, Sabine; Dogahe, Kiarash
    For over two decades, vascular stents have been widely used to treat clogged vessels, serving as a scaffold to enlarge the narrowed lumen and recover the arterial flow area. High-purity oligocrystalline austenitic steel is usually applied for the production of stents. Despite the popularity and benefit of stenting, it still may cause serious clinical adverse issues, such as in-stent restenosis and stent fracture. Therefore, the study of the mechanical properties of stents and in particular the prediction of their life cycles are in the focus of materials research. In our contribution, within the finite element method, a two-scale model of crack initiation in the microstructure of stents is elaborated. The approach is developed on the basis of the physically based Tanaka-Mura model (TMM), considering the evolution of shear bands during the crack initiation phase. The model allows for the analysis of the microstructure with respect to the life cycles of real materials. The effects of different loading conditions, grain orientation, and thickness of the specimen on Wöhler curves were analysed. It was found that the microstructural features of oligocrystals are very sensitive to different loading conditions with respect to their fatigue behaviour and play a major role in fatigue crack initiation. Different grain-orientation distributions result in qualitative and quantitative differences in stress distribution and in the number of cycles for crack initiation. It was found that presence of a neutral zone in the cut-out of the microstructure under three-point-bending loading conditions changes the qualitative and quantitative patterns of stress distribution and affects the number of cycles for crack initiation. It was found that under both tensile and bending loading conditions, thicker specimens require more cycles for crack initiation. The Wöhler curves for crack initiation in oligocrystalline microstructures of stents could be compared with the ones in the experiment, taking into account that for high cyclic fatigue (HCF), typically, more than 70% of the cycles refer to crack initiation. The developed numerical tools could be used for the material design of stents.
  • Thumbnail Image
    ItemOpen Access
    In‐situ investigation of dielectric properties and reaction kinetics of a glass‐fiber‐reinforced epoxy composite material using dielectric analysis
    (2021) Yan, Shuang; Zeizinger, Harald; Merten, Clemens; Schmauder, Siegfried
    Monitoring the curing behavior of a thermosetting material is a key issue for ensuring a stable manufacturing process (e.g., injection molding). Dielectric analysis (DEA), which is applicable for online‐monitoring, is used to investigate the curing behavior of a glass‐fiber‐reinforced epoxy molding compound. At first, the influences of experimental settings (pressure, temperature, and frequency) on dielectric responses (dielectric loss and ion viscosity) are characterized in a fully crosslinked material. Results show a significant impact of temperature and frequency on dielectric responses. Furthermore, DEA is combined with differential scanning calorimetry (DSC) to investigate dielectric properties depending on crosslink density under non‐isothermal and isothermal conditions. The results show that DEA can detect cure changes only for a crosslink density <80%. Finally, reaction kinetics, which can predict the crosslink density, is derived using DSC and validated through DEA for determining the best suitable kinetic expression for the investigated material. The crosslink density, estimated by reaction kinetics, can be correlated with the dielectric properties.
  • Thumbnail Image
    ItemOpen Access
    Abschlussbericht zum Projekt "Ressourcenschonende Mischschweißverbindungen für Hochleistungs-Leichtbauverbunde"
    (Stuttgart : Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre (IMWF) der Universität Stuttgart, 2018) Panzer, Florian; Werz, Martin; Nguyen, Phuc Lanh; Schneider, Matthias; Weihe, Stefan; Liewald, Mathias
    Im Rahmen des Projektes wurde das Rührreibschweißen als ressourceneffizientes und umweltfreundliches Fertigungsverfahren zur Herstellung von beanspruchungs- und gewichtsoptimierten Automobilbauteilen erforscht. Dabei galt es, Aluminium und Stahl in verschiedenen Dicken durch Rührreibschweißen zu fügen und durch anschließendes Umformen zum End- bzw. Zwischenprodukt umzuformen. Die auf die Festigkeiten der Werkstoffe angepassten Blechdicken führen zu einer optimalen Ausnutzung der Werkstoffe, da an jeder Stelle der Werkstoff verwendet werden kann, der die lokalen Anforderungen am besten erfüllt. Durch den Einsatz dieser sogenannten Tailor Welded Blanks sinkt der Werkstoffverbrauch insgesamt und es können auf Leichtbau optimierte Bauteile hergestellt werden. Im Rahmen des Projektes wurden verschiedene Aluminium- und Stahlgüten in unterschiedlichen Dicken durch Rührreibschweißen gefügt und die Festigkeits- sowie Umformeigenschaften ermittelt. Da die Einhaltung von engen Toleranzen mit hohen Kosten in der Fertigung einhergeht, wurden die für den Prozess notwendigen Toleranzen untersucht, Lösungen zum Umgang mit diesen Toleranzen erarbeitet und Anforderungen an Anlagen zur Produktion von Tailor Welded Blanks identifiziert. Zudem wurde das Umformen von Blechen mit unterschiedlichen Materialen und Blechdicken untersucht. Darüber hinaus wurde eine Reihe weiterer Themen wie das Verschweißen von Gusswerkstoffen und Wärmebehandlungsstrategien beleuchtet. Abschließend wurden Demonstratorbauteile in Form von Tailor Welded Blanks in Aluminium-Stahl- Mischbauweise durch Rührreibschweißen und anschließendes Umformen gefertigt.
  • Thumbnail Image
    ItemOpen Access
    Increasing fatigue life of 09Mn2Si steel by helical rolling : theoretical−experimental study on governing role of grain boundaries
    (2020) Panin, Sergey; Vlasov, Ilya; Maksimov, Pavel; Moiseenko, Dmitry; Maruschak, Pavlo; Yakovlev, Alexander; Schmauder, Siegfried; Berto, Filippo
    The structure and mechanical properties of the 09Mn2Si high-strength low-alloyed steel after the five-stage helical rolling (HR) were studied. It was revealed that the fine-grained structure had been formed in the surface layer ≈ 1 mm deep as a result of severe plastic strains. In the lower layers, the “lamellar” structure had been formed, which consisted of thin elongated ferrite grains oriented in the HR direction. It was shown that the five-stage HR resulted in the increase in the steel fatigue life by more than 3.5 times under cyclic tension. The highest values of the number of cycles before failure were obtained for the samples cut from the bar core. It was demonstrated that the degree of the elastic energy dissipation in the steel samples under loading directly depended on the area of the grain boundaries as well as on the grain shapes. The fine-grained structure possessed the maximum value of the average torsional energy among all the studied samples, which caused the local material structure transformation and the decrease in the elastic energy level. This improved the crack resistance under the cyclic mechanical loading. The effect of the accumulation of the rotational strain modes at the grain boundaries was discovered, which caused the local structure transformation at the boundary zones. In the fine-grained structure, the formation of grain conglomerates was observed, which increased the values of the specific modulus of the moment of force. This could be mutually compensated due to the small sizes of grains. At the same time, the coarse-grained structures were characterized by the presence of the small number of grains with a high level of the moments of forces at their boundaries. They could result in trans-crystalline cracking.