04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
3 results
Search Results
Item Open Access Enzymatische und chemische Studien zur Veresterung und Löslichkeit von Cellulose in ionischen Flüssigkeiten(2017) Hinner, Lars Pieter; Hauer, Bernhard (Prof. Dr.)Cellulose ist der Hauptbestandteil der pflanzlichen Zellwand und daher die häufigste organische Verbindung auf unserem Planeten. Dieses nachwachsende Biopolymer wird heutzutage hauptsächlich für die Produktion von Papier und Zellstoff verwendet oder verbrannt und somit als billiger Energieträger genutzt. Viele alternative Anwendungsgebiete sind aufgrund von unzureichenden Materialeigenschaften schwierig zu realisieren. Insbesondere thermoplastische Anwendungen sind nicht durchführbar, da Cellulose keinen Schmelzpunkt besitzt. Auch die chemische Modifikation der Cellulose - mit dem Ziel, andere Materialeigenschaften zu generieren - ist schwierig, da Cellulose nicht in Wasser oder in üblichen organischen Lösungsmitteln gelöst werden kann. Bis dato wurden daher industriell heterogene Synthesen entwickelt, um Cellulose im nicht gelösten Zustand zu modifizieren. Hierbei sind allerdings aufwendige mechanische und chemische Vorbehandlungen notwendig, um eine effiziente Verarbeitung bzw. Modifizierung der Cellulose zu gewährleisten. Zusätzlich sind heterogene Synthesen zur Produktion von Celluloseestern, aufgrund der starken sterischen Hinderung der nicht gelösten Cellulose, auf kurzkettige Acyldonoren (C2-C4) beschränkt. Somit ist es mit heterogenen Prozessen nicht möglich, das komplette Spektrum an potenziellen Celluloseestern zu erzeugen. Es gibt allerdings ein steigendes Interesse an neuartigen Celluloseestern, da beispielsweise Celluloseacetat nur eine schlechte thermoplastische Prozessierbarkeit aufweist. Die Herstellung von neuartigen Celluloseestern kann in homogenen Synthesen besser realisiert werden, in denen Cellulose vollständig gelöst vorliegt. Als Reaktionsmedium können unter anderem spezielle ionische Flüssigkeiten genutzt werden, welche in der Lage sind, Cellulose zu lösen. In diesem Kontext wurden verschiedene Synthesen entwickelt, welche reaktive Acyldonoren verwenden. Der Einsatz von derartigen Acyldonoren, wie beispielsweise Carbonsäurechloriden ist allerdings problematisch, da diese sowohl das Cellulosegrundgerüst, als auch die ionische Flüssigkeit zersetzen können. Daher erscheint eine homogene enzymatische Synthese von Celluloseestern als interessante Alternative, da durch die Verwendung von enzymatischen Katalysatoren weniger reaktive Acyldonoren, wie beispielsweise Ester, genutzt werden können. Angesichts der Herausforderung, unter moderaten Bedingungen zu katalysieren, lag ein Fokus der hier vorgelegten Arbeit in der Entwicklung einer enzymatischen Synthese von Celluloseestern mit langen Seitenketten. Da die Analytik von niedrig substituierten Celluloseestern schwierig ist, wurden zunächst leichter zu analysierende Modellreaktionen untersucht. Einfache Veresterungs- und Umesterungsreaktionen können in Cellulose-lösenden ionischen Flüssigkeiten erfolgreich enzymatisch katalysiert werden. Die enzymatische Synthese von Glucoseestern war jedoch nur in ionischen Flüssigkeiten erfolgreich, welche Cellulose nicht lösen. Als möglicher Grund hierfür wird eine mangelnde Interaktion zwischen Enzym und Glucose in diesen polaren ionischen Flüssigkeiten postuliert. Um die Interaktion zwischen Enzym und Glucose zu steigern, wurde die Glucosekonzentration erhöht, was allerdings zu keiner erfolgreichen Synthese von Glucoselaurat führte, da die große Viskosität von hoch konzentrierten Zuckerlösungen den Massentransfer und damit die Reaktion zusätzlich inhibiert. Eine Steigerung der Interaktionswahrscheinlichkeit zwischen Enzym und Glucose durch die Erhöhung der Glucosekonzentration ist allerdings in dem ebenfalls polaren Lösungsmittel Dimethylsulfoxid (DMSO) erfolgreich und erzeugt ab einer Glucosekonzentration von 60 % w/v signifikante Mengen an Glucoselaurat. Um sich in einem nächsten Schritt an den polymeren Charakter der Cellulose weiter anzunähern, wurde die enzymatische Veresterung des Dimers der Cellulose, d.h. der Cellobiose, als weitere Modellreaktion untersucht. Hierbei katalysiert das Enzym Candida antarctica Lipase B (CAL-B) die Synthese von nur sehr geringen Mengen an Cellobioseestern, wobei andere, ebenfalls aus Glucose aufgebaute Disaccharide wie Maltose und Trehalose, deutlich besser umgesetzt werden. Neunzehn verschiedene Enzympräparationen wurden auf die Fähigkeit untersucht, Cellobioselaurat zu synthetisieren. Den höchsten Umsatz katalysiert die Schweineleberesterase (PLE), jedoch zeigte dieses Enzym keine Aktivität gegenüber Cellulose als Ausgangssubstrat. Neben der enzymatischen Katalyse wurde eine chemische Synthese, basierend auf Vinylestern, entwickelt. Diese Vinylester-basierte Synthese ermöglicht erstmals die Acylierung von Cellulose mit Vinylestern in der biologisch abbaubaren ionischen Flüssigkeit 1-Ethyl-3-methylimidazoliumacetat ([EMIM]OAc). Die Reaktion läuft in Abwesenheit von zusätzlichen Katalysatoren ab und erlaubt die Synthese von Glucoseestern und Celluloseestern mit unterschiedlich langen Seitenketten. Es war möglich, Celluloseester mit Substitutionsgraden von 0,24 bis 3,00 zu erzeugen. Um die Reaktion zu charakterisieren, wurden verschiedene Reaktionsparameter wie Reaktionszeit, Temperatur und die Menge an Acyldonor systematisch variiert und mittels 1H-NMR, FT-IR und HPLC-GPC analysiert. Der höchste Veresterungsgrad ergibt sich bei einer Synthese-temperatur von 80°C und einer Reaktionszeit von zwei Stunden. Um die Synthese mit anderen Reaktionen aus der Literatur zu vergleichen, wurde eine Fettsäurechlorid-basierte Synthese von Barthel und Heinze in der ionischen Flüssigkeit 1-Butyl-3-methylimidazoliumchlorid ([BMIM]Cl) reproduziert. Beide Reaktionen zeigen vergleichbare Substitutionsgrade (DS), jedoch ist der Polymerisationsgrad (DP) von Celluloselaurat nach der Fettsäurechlorid-basierten Synthese erheblich reduziert, während die Vinylester-basierte Synthese deutlich schonender ist und die Produktion von signifikant größeren Celluloseestern erlaubt. Bei der Vinylester-basierten Synthese in [EMIM]OAc wurde eine zusätzliche Acetylierung der Cellulose als unerwünschte Nebenreaktion identifiziert. Der Acetylierungsgrad steigt mit abnehmender Polarität und steigender sterischer Hinderung der eingesetzten Vinylester. Allgemein ist der Acetylierungsgrad nach der Vinylester-basierten Synthese in [EMIM]OAc allerdings deutlich niedriger als bei bereits beschriebenen Synthesen in [EMIM]OAc, welche Anhydride oder Fettsäurechloride als Acyldonoren nutzen. Das Produktspektrum der Vinylester-basierten Synthese konnte durch Verwendung zusätzlicher Acyldonoren wie Benzoesäurevinylester, Pivalinsäurevinylester, Neodecansäurevinylester und 2-Ethylhexansäurevinylester erfolgreich erweitert werden. Des Weiteren wurden die thermoplastischen und rheologischen Eigenschaften der Celluloseester im Rahmen einer Kooperation mit Linda Göbel vom Institut für Kunststofftechnik untersucht, wobei die thermoplastische Verarbeitbarkeit prinzipiell bestätigt wer-den konnte. Es wurde außerdem ein Upscaling der Synthese mit anschließendem Recycling der ionischen Flüssigkeit durchgeführt. Das Upscaling wurde in einem Laborreaktor mit 2,5 kg ionischer Flüssigkeit durchgeführt, wobei 233,25 g Celluloselaurat mit einem Substitutionsgrad von 2,3 synthetisiert werden konnte. Die ionische Flüssigkeit wurde mit einer durchschnittlichen Effizienz von 91 % w/w recycelt und konnte in einer nach-folgenden Synthese als Lösungsmittel eingesetzt werden. Insgesamt wurden drei Synthese-Recyclingzyklen durchgeführt, wobei der Substitutionsgrad nach den ersten zwei Synthesen bei 2,3 lag, bei der dritten bzw. vierten Synthese allerdings auf 1,8 bzw. 1,4 sank. Parallel zur Verringerung des Substitutionsgrades verkürzte sich die Lösezeit von Cellulose in der ionischen Flüssigkeit mit jedem weiteren Recyclingzyklus signifikant. Als Grund für die verbesserte Löslichkeit wurde die Bildung von 1-Ethyl-2-hydroxyethyl-3-methylimidazolium (EHEMIM) identifiziert, das durch die Reaktion einer Carben-Spezies des 1-Ethyl-3-methylimidazoliums (EMIM) mit Acetaldehyd - welches als Nebenprodukt bei der Vinylester-basierten Synthese auftritt - entsteht. Weiterhin konnte gezeigt werden, dass das Vorhandensein von Wasser für das verbesserte Lösungsvermögen des [EHEMIM]-[EMIM]OAc-Systems essentiell ist. Die besten Lösungseigenschaften wurden bei einem Kationenanteil von 50 mol-% EHEMIM bzw. 50 mol-% EMIM und einem Wassergehalt von 8,5 % w/w beobachtet. Dieses optimierte [EHE-MIM]-[EMIM]OAc-Wasser-System ermöglicht das Lösen von 14 % w/w Cellulose bei 80°C innerhalb von 3 Stunden. Im Gegensatz dazu löst die ursprüngliche ionische Flüssigkeit [EMIM]OAc bzw. [EMIM]OAc mit einem optimalen Wassergehalt von 10 % w/w unter den gleichen Bedingungen lediglich 1 % w/w bzw. 2 % w/w Cellulose.Item Open Access Identification of factors impeding the production of a single-chain antibody fragment in Escherichia coli by comparing in vivo and in vitro expression(2003) Ölschläger, Peter; Lange, Stefan; Schmitt, Jutta; Siemann-Herzberg, Martin; Reuss, Matthias; Schmid, Rolf D.In order to produce the atrazine-specific scFv K411B, it was expressed in either the cytoplasm or the periplasm of Escherichia coli BL21(DE3). For periplasmic production, the scFv was N-terminally fused to the pelB leader, whereas the unfused variant resulted in cytoplasmic expression. The extent of protein accumulation differed significantly: The expression level of the scFv with leader was 2.3 times higher than that of the protein without leader. To further investigate this, the respective translation profiles were generated by coupled in vitro transcription/translation assays and gave according results. Periplasmic expression resulted in only 10% correctly folded scFv. The same percentage was obtained when the scFv was expressed in vitro, indicating that the oxidizing environment of the periplasm did not increase proper folding. Thus, the data obtained in vitro confirmed the findings observed in vivo and suggested that the discrepancy in expression levels was due to different translation efficiencies. However, the in vivo production of the scFv with EGFP fused C-terminally (scFv-EGFP) was only successful in the cytoplasm, although in vitro the expression with and without the leader rendered the same production profile. This indicated that neither the translation efficiency nor the solubility but other factors impeded periplasmic expression of the fusion protein.Item Open Access Novel route to vanillin - an enzyme-catalyzed multi-step cascade synthesis(2016) Klaus, Tobias; Hauer, Bernhard (Prof. Dr.)The selective hydroxylation of aromatic compounds is one of the most challenging chemical reactions. As an alternative to traditional chemical catalysis, biocatalysis emerged during the past decades. Hence, in the present work, a number of biocatalysts was investigated with regard to the realization of a novel synthesis route to the valuable aromatic compound vanillin, starting from the simple low-cost aromatic substrate 3-methylanisole via the intermediate products 3-methoxybenzyl alcohol or 4-methylguaiacol and via vanillyl alcohol, as an example of consecutive enzyme-catalyzed oxidation reactions accomplished in a multi-enzymatic three-step cascade reaction. For this reason a preselected set of enzymes, namely the m-hydroxybenzoate hydroxylase MobA from Comamonas testosteroni GZ39 and the cytochrome P450 monooxygenases CYP116B3 from Rhodococcus ruber DSM 44319 and CYP102A1 from Bacillus megaterium ATCC 14581, was investigated towards the selective hydroxylation of the substrate 3-methylanisole. Beside the wild type enzymes, a variant of MobA, which was created by rational protein design, and an existing focused minimal mutant library of CYP102A1 were applied in initial biotransformation reactions, combined with an efficient cofactor recycling system. Though the wild type enzymes of CYP116B3 and CYP102A1 displayed only a basic level of activity towards 3-methylanisole, highly increased activity was detected for many of the CYP102A1 variants with a maximum of 59% total conversion for the double mutant F87V/A328L. With 3-methoxybenzyl alcohol and 4-methylguaiacol both intermediate compounds of the intended cascade synthesis were generated, though 4-methoxy-2-methylphenol was the main product in most of the reactions. However, none of the so far investigated variants accepted any of the intermediate compounds as substrate. As CYP116B3 was a good candidate for further protein engineering approaches, as a basic level of activity towards the substrate of interest was already present in the wild type enzyme, a focused mutant library of 20 single mutant variants of CYP116B3 was created based on literature, sequence and structure information in order to improve the enzymes activity and selectivity towards conversion of the substrate 3-methylanisole and in order to find variants for the conversion of 3-methoxybenzyl alcohol and/or 4-methylguaiacol. Therefore a homology model of the monooxygenase domain of CYP116B3 was generated. Though, compared to the wild type, variants with up to almost six time increased activity towards the model substrate 7-ethoxycoumarin were found, total activity towards 3-methylanisole was still much lower compared to the best CYP102A1 variants. In addition, none of the variants displayed appropriate conversion of the intermediate compounds 3-methoxybenzyl alcohol and 4-methylguaiacol. Moreover, additional mutation in the literature known amino acid position 437 of CYP102A1 variant F87V/A328L revealed no benefit towards conversion of any of the substrates, too. Molecular dynamics simulations of a CYP102A1 variant with 4-methylguaiacol as substrate revealed the bottleneck in the conversion of this compound. 4-Methylguaiacol was shown to be stabilized at the entrance of the substrate access channel by the polar amino acid residues R47 and Y51. Replacement of these residues by the hydrophobic residues leucine and phenylalanine, respectively, resulted in successful conversion of 4-methylguaiacol to vanillyl alcohol, the precursor of vanillin in the intended cascade synthesis. Though, as the yield of vanillyl alcohol synthesized from 4-methylguaiacol with CYP102A1 variants was rather low, a vanillyl alcohol oxidase from Penicillium simplicissimum and rationally designed variants thereof, described in literature, were investigated. As a result, not only vanillyl alcohol but also 4-methylguaiacol was converted in high yield to vanillin. Finally, a combination of the best 4-methylguaiacol producing variant, CYP102A1 variant A328L, with the best 4-methylguaiacol converting variant, VAO variant F454Y, in one reaction system both in vitro and in vivo yielded vanillin from 3-methylanisole with a maximal product formation of 2.0% and 1.1% vanillin, respectively. We demonstrated as a proof-of-principle the establishment of the proposed multi-enzymatic three-step cascade reaction pathway. Though further optimizations concerning increase of enzyme activity and improvement of enzyme selectivity are required, the above mentioned exemplary synthesis of vanillin illustrates the capability of biocatalysis.