04 Fakultät Energie-, Verfahrens- und Biotechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Application of generalized (hyper-) dual numbers in equation of state modeling
    (2021) Rehner, Philipp; Bauer, Gernot
    The calculation of derivatives is ubiquitous in science and engineering. In thermodynamics, in particular, state properties can be expressed as derivatives of thermodynamic potentials. The manual differentiation of complex models can be tedious and error-prone. In this work, we revisit dual and hyper-dual numbers for the calculation of exact derivatives and show generalizations to higher order derivatives and derivatives with respect to vector quantities. The methods described in this paper are accompanied by an open source Rust implementation with Python bindings. Applications of the generalized (hyper-) dual numbers are given in the context of equation of state modeling and the calculation of critical points.
  • Thumbnail Image
    ItemOpen Access
    Interfacial properties using classical density functional theory : curved interfaces and surfactants
    (Stuttgart : Universität Stuttgart, Institut für Technische Thermodynamik und Thermische Verfahrenstechnik, 2021) Rehner, Philipp; Groß, Joachim (Prof. Dr.-Ing.)
    Interfaces play an important role in natural and industrial processes. Classical density functional theory (DFT) has been established as a tool capable of predicting interfacial properties, but also of providing insight in the structure of fluids at interfaces. Compared to other statistical mechanical methods, particularly molecular simulation, an efficient implementation of DFT offers a significant reduction in computation time. This advantage comes with the cost of an increased modeling effort. In this work, the calculation of interfacial properties using DFT is discussed and applied to different aspects of interfaces. First, the properties of highly curved interfaces, as they appear in nucleation processes, are studied. This is done first by directly calculating the properties of nanodroplets using DFT in spherical coordinates and afterwards in an expansion around a flat interface. Because for some applications, the calculation time of DFT is a limiting factor, a new method to predict surface tensions from equation of state parameters is introduced. This is achieved by using a Taylor expansion of the full DFT Helmholtz energy functional around a local density. The resulting functional is identical to that used in density gradient theory except for an explicit, temperature and density dependent expression for the influence matrix. The method is subsequently used to examine in detail the parametrization of associating components, particularly water and alcohols, that pose difficulties with respect to the simultaneous description of bulk phase equilibria and interfacial properties. A multiobjective optimization approach is used to assess different models and to quantify their capabilities and limitations. The so obtained water model presents the foundation for the last segment of this work, that studies the interfacial properties of water/surfactant and water/alkane/surfactant systems. The amphiphilic surfactant molecules are modeled using a heteronuclear DFT approach that resolves the distributions of individual segments. The parameters of this group contribution method are obtained by fitting to properties of small surfactant molecules and can then be used to predict properties of larger molecules for which less or no experimental data is available. The model is used to study the adsorption and orientation of surfactant molecules at interfaces and the corresponding reduction in interfacial tension.
  • Thumbnail Image
    ItemOpen Access
    Process-based screening of porous materials for vacuum swing adsorption based on 1D classical density functional theory and PC-SAFT
    (2025) Mayer, Fabian; Buhk, Benedikt; Schilling, Johannes; Rehner, Philipp; Gross, Joachim; Bardow, André
    Adsorption-based processes are showing substantial potential for carbon capture. Due to the vast space of potential solid adsorbents and their influence on the process performance, the choice of the material is not trivial but requires systematic approaches. In particular, the material choice should be based on the performance of the resulting process. In this work, we present a method for the process-based screening of porous materials for pressure and vacuum swing adsorption. The method is based on an equilibrium process model that incorporates one-dimensional classical density functional theory (1D-DFT) and the PC-SAFT equation of state. Thereby, the presented method can efficiently screen databases of potential adsorbents and identify the best-performing materials as well as the corresponding optimized process conditions for a specific carbon capture application. We apply our method to a point-source carbon capture application at a cement plant. The results show that the process model is crucial to evaluating the performance of adsorbents instead of relying solely on material heuristics. Furthermore, we enhance our approach through multi-objective optimization and demonstrate for materials with high performance that our method is able to capture the trade-offs between two process objectives, such as specific work and purity. The presented method thus provides an efficient screening tool for adsorbents to maximize process performance.