04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
8 results
Search Results
Item Open Access DNS of multiple bubble growth and droplet formation in superheated liquids(2018) Loureiro, Daniel Dias; Reutzsch, Jonathan; Dietzel, Dirk; Kronenburg, Andreas; Weigand, Bernhard; Vogiatzaki, KonstantinaFlash boiling can occur in rocket thrusters used for orbital manoeuvring of spacecraft as the cryogenic propellants are injected into the vacuum of space. For reliable ignition, a precise control of the atomization process is required as atomization and mixing of fuel and oxidizer are crucial for the subsequent combustion process. This work focuses on the microscopic process leading to the primary break-up of a liquid oxygen jet, caused by homogeneous nucleation and growth of vapour bubbles in superheated liquid. Although large levels of superheat can be achieved, sub-critical injection conditions ensure distinct gas and liquid phases with a large density ratio. Direct numerical simulations (DNS) are performed using the multiphase solver FS3D. The code solves the incompressible Navier-Stokes equations using the Volume of Fluid (VOF) method and PLIC reconstruction for the phase interface treatment. The interfaces are tracked as multiple bubbles grow, deform and coalesce, leading to the formation of a spray. The evaporation rate at the interface and approximate vapour properties are based on pre-computed solutions resolving the thermal boundary layer surrounding isolated bubbles, while liquid inertia and surface tension effects are expected to play a major role in the final spray characteristics which can only be captured by DNS. Simulations with regular arrays of bubbles demonstrate how the initial bubble spacing and thermodynamic conditions lead to distinct spray characteristics and droplet size distributions.Item Open Access Sparse-Lagrangian PDF modelling of silica synthesis from silane jets in vitiated co-flows with varying inflow conditions(2020) Neuber, Gregor; Kronenburg, Andreas; Stein, Oliver T.; Garcia, Carlos E.; Williams, Benjamin A. O.; Beyrau, Frank; Cleary, Matthew J.This paper presents a comparison of experimental and numerical results for a series of turbulent reacting jets where silica nanoparticles are formed and grow due to surface growth and agglomeration. We use large-eddy simulation coupled with a multiple mapping conditioning approach for the solution of the transport equation for the joint probability density function of scalar composition and particulate size distribution. The model considers inception based on finite-rate chemistry, volumetric surface growth and agglomeration. The sub-models adopted for these particulate processes are the standard ones used by the community. Validation follows the “paradigm shift” approach where elastic light scattering signals (that depend on particulate number and size), OH- and SiO-LIF signals are computed from the simulation results and compared with “raw signals” from laser diagnostics. The sensitivity towards variable boundary conditions such as co-flow temperature, Reynolds number and precursor doping of the jet is investigated. Agreement between simulation and experiments is very good for a reference case which is used to calibrate the signals. While keeping the model parameters constant, the sensitivity of the particulate size distribution on co-flow temperature is predicted satisfactorily upstream although quantitative differences with the data exist downstream for the lowest coflow temperature case that is considered. When the precursor concentration is varied, the model predicts the correct direction of the change in signal but notable qualitative and quantitative differences with the data are observed. In particular, the measured signals show a highly non-linear variation while the predictions exhibit a square dependence on precursor doping at best. So, while the results for the reference case appear to be very good, shortcomings in the standard submodels are revealed through variation of the boundary conditions. This demonstrates the importance of testing complex nanoparticle synthesis models on a flame series to ensure that the physical trends are correctly accounted for.Item Open Access Fully-resolved simulations of coal particle combustion using a detailed multi-step approach for heterogeneous kinetics(2019) Tufano, Giovanni Luigi; Stein, Oliver T.; Kronenburg, Andreas; Gentile, Giancarlo; Stagni, Alessandro; Frassoldati, Alessio; Faravelli, Tiziano; Kempf, Andreas M.; Vascellari, Michele; Hasse, ChristianItem Open Access Modeling of scalar mixing in turbulent jet flames by multiple mapping conditioning(2009) Vogiatzaki, Konstantina; Cleary, Matthew J.; Kronenburg, Andreas; Kent, JohnItem Open Access Resolving breakup in flash atomization conditions using DNS(2019) Loureiro, Daniel Dias; Reutzsch, Jonathan; Kronenburg, Andreas; Weigand, Bernhard; Vogiatzaki, KonstantinaFlash boiling can occur in rocket thrusters operating in the vacuum of space when cryogenic propellants are injected into the reaction chamber that is initially at low pressure. The dynamics of this process will determine the spray breakup that will then drastically affect the mixing of fuel and oxidizer, the reliability of the ignition and the subsequent combustion process. A multiphase solver with interface capturing is used to perform direct numerical simulations (DNS) of the primary breakup of the liquid oxygen jet that is driven by homogeneous nucleation, growth, coalescence and bursting of vapour bubbles in the superheated liquid. Considering the main breakup patterns and droplet formation mechanisms for a range of conditions, we evaluate the effectiveness of the volume of fluid (VoF) with continuum surface stress (CSS) method to capture the breakup of thin lamellae formed at high Weber numbers. A grid refinement study shows convergence of the mass averaged droplet size towards a droplet diameter. The order of magnitude of the resulting diameter can be estimated based on the thermodynamic conditions.Item Open Access Numerical investigation of spray collapse in GDI with OpenFOAM(2021) Gärtner, Jan Wilhelm; Feng, Ye; Kronenburg, Andreas; Stein, Oliver T.During certain operating conditions in spark-ignited direct injection engines (GDI), the injected fuel will be superheated and begin to rapidly vaporize. Fast vaporization can be beneficial for fuel-oxidizer mixing and subsequent combustion, but it poses the risk of spray collapse. In this work, spray collapse is numerically investigated for a single hole and the spray G eight-hole injector of an engine combustion network (ECN). Results from a new OpenFOAM solver are first compared against results of the commercial CONVERGE software for single-hole injectors and validated. The results corroborate the perception that the superheat ratio Rp, which is typically used for the classification of flashing regimes, cannot describe spray collapse behavior. Three cases using the eight-hole spray G injector geometry are compared with experimental data. The first case is the standard G2 test case, with iso-octane as an injected fluid, which is only slightly superheated, whereas the two other cases use propane and show spray collapse behavior in the experiment. The numerical results support the assumption that the interaction of shocks due to the underexpanded vapor jet causes spray collapse. Further, the spray structures match well with experimental data, and shock interactions that provide an explanation for the observed phenomenon are discussed.Item Open Access Single-shot two-dimensional multi-angle light scattering (2D-MALS) technique for nanoparticle aggregate sizing(2021) Martins, Fabio J. W. A.; Kronenburg, Andreas; Beyrau, FrankThe two-dimensional multi-angle light scattering (2D-MALS) technique has been extended for single-shot size measurements of soot aggregates in flames. Six cameras are used for instantaneous acquisition of the elastic scattering from the aggregates at different directions between 10 to 90∘ of a laser light sheet. Two diluted ethylene (50 and 60% by volume of C2H4 fuel diluted with inert N2) coflow laminar diffusion flames with little flickering are used as proof of concept. Results of instantaneous, average and fluctuating 2D fields of the effective radii of gyration, which are expected to characterize the size of the aggregates, compare well with the literature, demonstrating the applicability of the proposed sizing method to weakly unsteady combustion processes.Item Open Access Multiple mapping conditioning mixing time scales for turbulent premixed flames(2022) Iaroslavtceva, Nadezhda; Kronenburg, Andreas; Stein, Oliver T.A novel multiple mapping conditioning (MMC) mixing time scale model for turbulent premixed combustion has been developed. It combines time scales for the flamelet and distributed flame regimes with the aid of a blending function. The blending function serves two purposes. Firstly, it helps to identify zones where the premixed flame resides and where the time scale associated with the premixed flame shall be used. Secondly, it uses the Karlovitz number to identify the turbulent premixed combustion regime and to reduce the weighting of the premixed flame time scale if Karlovitz numbers are high and deviations from the flamelet regime are expected. A series of three-dimensional direct numerical simulations (DNS) of statistically one dimensional, freely propagating turbulent methane-air flames provides a wide range of turbulent combustion regimes for the mixing model validation. The new mixing time scale provides correct predictions of the flame speed of freely propagating turbulent flames which could not be matched by most recognized mixing models. The turbulent flame structure predicted by the new model is in good agreement with DNS for all combustion regimes from flamelet to the thickened reaction zone.