04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
6 results
Search Results
Item Open Access Indolyl-chalcone derivatives trigger apoptosis in cisplatin-resistant mesothelioma cells through aberrant tubulin polymerization and deregulation of microtubule-associated proteins(2023) Steinlein, Sophia; Essmann, Frank; Ghilardi, Amanda Franceschini; Horn, Heike; Schüler, Julia; Hausser, Angelika; Sun, Lijun; Ott, German; Kalla, ClaudiaMalignant pleural mesothelioma (MPM) is a neoplasm with dismal prognosis and notorious resistance to the standard therapeutics cisplatin and pemetrexed. Chalcone derivatives are efficacious anti-cancer agents with minimal toxicity and have, therefore, gained pharmaceutical interest. Here, we investigated the efficacy of CIT-026 and CIT-223, two indolyl-chalcones (CITs), to inhibit growth and viability of MPM cells and defined the mechanism by which the compounds induce cell death. The effects of CIT-026 and CIT-223 were analyzed in five MPM cell lines, using viability, immunofluorescence, real-time cell death monitoring, and tubulin polymerization assays, along with siRNA knockdown. Phospho-kinase arrays and immunoblotting were used to identify signaling molecules that contribute to cell death. CIT-026 and CIT-223 were toxic in all cell lines at sub-micromolar concentrations, in particular in MPM cells resistant to cisplatin and pemetrexed, while normal fibroblasts were only modestly affected. Both CITs targeted tubulin polymerization via (1) direct interaction with tubulin and (2) phosphorylation of microtubule regulators STMN1, CRMP2 and WNK1. Formation of aberrant tubulin fibers caused abnormal spindle morphology, mitotic arrest and apoptosis. CIT activity was not reduced in CRMP2-negative and STMN1-silenced MPM cells, indicating that direct tubulin targeting is sufficient for toxic effects of CITs. CIT-026 and CIT-223 are highly effective inducers of tumor cell apoptosis by disrupting microtubule assembly, with only modest effects on non-malignant cells. CITs are potent anti-tumor agents against MPM cells, in particular cells resistant to standard therapeutics, and thus warrant further evaluation as potential small-molecule therapeutics in MPM.Item Open Access Membrane trafficking in breast cancer progression : protein kinase D comes into play(2023) Gutiérrez-Galindo, Elena; Yilmaz, Zeynep Hazal; Hausser, AngelikaProtein kinase D (PKD) is a serine/threonine kinase family that controls important cellular functions, most notably playing a key role in the secretory pathway at the trans-Golgi network. Aberrant expression of PKD isoforms has been found mainly in breast cancer, where it promotes various cellular processes such as growth, invasion, survival and stem cell maintenance. In this review, we discuss the isoform-specific functions of PKD in breast cancer progression, with a particular focus on how the PKD controlled cellular processes might be linked to deregulated membrane trafficking and secretion. We further highlight the challenges of a therapeutic approach targeting PKD to prevent breast cancer progression.Item Open Access Protein kinase D promotes activity‐dependent AMPA receptor endocytosis in hippocampal neurons(2021) Oueslati Morales, Carlos O.; Ignácz, Attila; Bencsik, Norbert; Sziber, Zsofia; Rátkai, Anikó Erika; Lieb, Wolfgang S.; Eisler, Stephan A.; Szűcs, Attila; Schlett, Katalin; Hausser, Angelikaα‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) type glutamate receptors (AMPARs) mediate the majority of fast excitatory neurotransmission in the brain. The continuous trafficking of AMPARs into and out of synapses is a core feature of synaptic plasticity, which is considered as the cellular basis of learning and memory. The molecular mechanisms underlying the postsynaptic AMPAR trafficking, however, are still not fully understood. In this work, we demonstrate that the protein kinase D (PKD) family promotes basal and activity‐induced AMPAR endocytosis in primary hippocampal neurons. Pharmacological inhibition of PKD increased synaptic levels of GluA1‐containing AMPARs, slowed down their endocytic trafficking and increased neuronal network activity. By contrast, ectopic expression of constitutive active PKD decreased the synaptic level of AMPARs, while increasing their colocalization with early endosomes. Our results thus establish an important role for PKD in the regulation of postsynaptic AMPAR trafficking during synaptic plasticity.Item Open Access Spatiotemporal control of intracellular membrane trafficking by Rho GTPases(2019) Olayioye, Monilola A.; Noll, Bettina; Hausser, AngelikaAs membrane-associated master regulators of cytoskeletal remodeling, Rho GTPases coordinate a wide range of biological processes such as cell adhesion, motility, and polarity. In the last years, Rho GTPases have also been recognized to control intracellular membrane sorting and trafficking steps directly; however, how Rho GTPase signaling is regulated at endomembranes is still poorly understood. In this review, we will specifically address the local Rho GTPase pools coordinating intracellular membrane trafficking with a focus on the endo- and exocytic pathways. We will further highlight the spatiotemporal molecular regulation of Rho signaling at endomembrane sites through Rho regulatory proteins, the GEFs and GAPs. Finally, we will discuss the contribution of dysregulated Rho signaling emanating from endomembranes to the development and progression of cancer.Item Open Access The GEF‐H1/PKD3 signaling pathway promotes the maintenance of triple‐negative breast cancer stem cells(2019) Lieb, Wolfgang S.; Lungu, Cristiana; Tamas, Raluca; Berreth, Hannah; Rathert, Philipp; Storz, Peter; Olayioye, Monilola A.; Hausser, AngelikaItem Open Access ER stress-induced cell death proceeds independently of the TRAIL-R2 signaling axis in pancreatic β cells(2022) Hagenlocher, Cathrin; Siebert, Robin; Taschke, Bruno; Wieske, Senait; Hausser, Angelika; Rehm, MarkusProlonged ER stress and the associated unfolded protein response (UPR) can trigger programmed cell death. Studies in cancer cell lines demonstrated that the intracellular accumulation of TRAIL receptor-2 (TRAIL-R2) and the subsequent activation of caspase-8 contribute significantly to apoptosis induction upon ER stress. While this might motivate therapeutic strategies that promote cancer cell death through ER stress-induced caspase-8 activation, it could also support the unwanted demise of non-cancer cells. Here, we therefore investigated if TRAIL-R2 dependent signaling towards apoptosis can be induced in pancreatic β cells, whose loss by prolonged ER stress is associated with the onset of diabetes. Interestingly, we found that elevated ER stress in these cells does not result in TRAIL-R2 transcriptional induction or elevated protein levels, and that the barely detectable expression of TRAIL-R2 is insufficient to allow TRAIL-induced apoptosis to proceed. Overall, this indicates that apoptotic cell death upon ER stress most likely proceeds independent of TRAIL-R2 in pancreatic β cells. Our findings therefore point to differences in ER stress response and death decision-making between cancer cells and pancreatic β cells and also have implications for future targeted treatment strategies that need to differentiate between ER stress susceptibility of cancer cells and pancreatic β cells.